Posterior cervical decompressive laminectomy and lateral mass screw fixation

Ziad A. Audat, MBBS, CHSM, Mohamed M. Barbarawi, MBBS, CHSM, Moutasem M. Obeidat, MBBS, CHSM.

Roy-Camille et al, in 1979, introduced posterior cervical fixation with lateral mass screws, and it has been increasingly used since that time to treat a wide range of cervical spine disorders. Posterior cervical fixation was frequently involved in forms of wire and bone construct fixation, with a proven long-

ABSTRACT

Objective: To review the results and complications of cervical decompressive laminectomy and lateral mass screw fixation.

Methods: This retrospective study was carried out between October 2006 and January 2010 at King Abdullah University Hospital, Irbid, Jordan. Over 40 months, 405 lateral mass screws were placed in 50 patients aged 22-65 years (17 females, and 33 males) for variable cervical pathologies including degenerative disease, trauma, and neoplasm. All cases were performed with a polyaxial screw/rod construct. Most patients had 14 mm length and 3.5 mm diameter screws placed. The screw location was evaluated by postoperative plain x-ray and CT. The facet joint, foraminal and foramen transversarium violation were also assessed.

Results: All screws were placed using the Anderson or Sekhon methods. No patients experienced neural or vascular injury as a result of screw position. One patient needed screw repositioning. Three patients experienced superficial wound infection. Five patients experienced pain around the shoulder of C5 distribution that subsided over time. No patients had screw pullouts or symptomatic adjacent segment disease. Postoperative CT scanning showed no compromise of the foramen transversarium or neural foramen in the vast majority of the patients.

Conclusions: Lateral mass screw stabilization is a safe and effective surgical technique. This study exhibits the safety and effectiveness of lateral mass fixation for a variety of subaxial cervical spine disease.

Neurosciences 2011; Vol. 16 (3): 248-252

From the Departments of Orthopedics (Audat, Obeidat), and Neurosurgery (Barbarawi), King Abdullah University Hospital, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan.

Disclosure. We declare no conflict of interests, and we are not supported or funded by any Drug or Medical Company.
term effectiveness requiring no special skills or x-ray guidance.2,4 Posterior cervical wire fixation may not be efficient in the osteoporotic patient, as this surgical method can compromise the posterior cervical parts resulting in aggravation of the primary pathology and worsening of the neurological status requiring adequate fixation using the lateral mass fixation technique.5,7 Furthermore, stainless-steel wire can also interfere with postoperative MRI results, in contrast to the MRI compatible titanium screw/rod constructs. Lateral mass screw fixation has advantages over standard posterior wiring techniques as it can be applied to patients with laminectomy, and can be performed easily for many levels with preservation of biomechanical forces. The fear of neural or vascular injury can explain the reservations of surgeons unfamiliar with this technique; however, this method does have the global acceptance of many surgeons.8-10

Our aim is to retrospectively evaluate 50 consecutive cases treated with decompressive cervical laminectomy and lateral mass fixation for a variety of cervical spine disorders. The operative and clinical outcomes, as well as postoperative CT analysis are provided with particular emphasis on neurological and vascular complications.

Methods. The study was approved by the Ethical Committee for Human Research (IRB) at Jordan University of Science and Technology. Our study population consisted of 50 patients treated for multiple cervical pathologies at the King Abdullah University Hospital, Irbid, Jordan, between October 2006 and January 2010. Decompressive cervical laminectomy with a total of 405 lateral mass screws was applied in the subaxial levels between C3 and C7 to deal with degenerative disease, trauma, and neoplasms. Patients with congenital anomalies or active infection were not included in this study. The severity of cervical myelopathy was assessed using the Nurick scale.11 The patient demographics were reviewed and analyzed in a retrospective manner.

Surgical technique. The surgical technique was used in the same manner for all cases. Fiberoptic intubation was considered for cases with severe stenosis and significant cervical myelopathy or gross instability. The lateral masses were drilled and tapped prior to laminectomy. Screw length was decided based on preoperative imaging assessment. The placement of screws was performed after cervical decompression. The screw direction was considered from standard trajectories. The entry point was approximately one mm medial to the midpoint of the lateral mass. Using a modified Anderson8 or Sekhon technique,12 the screws were angulated approximately 25° laterally and superiorly to achieve the best position of the lateral mass, and to minimize the risk of neural or vascular violation (Figures 1a & 1b). At C7, when the lateral mass was included in the fixation, more angulation was effected.

A variety of different implants were used including Vertex (Medtronic Sofamor-Danek, Minneapolis, MN, USA) and Oasys (Stryker Spine, Kalamazoo, MI, USA) polyaxial screw/rod constructs. All polyaxial screw/rod constructs were used adequately in the subaxial region. Screws of 12-14 mm length and 3.5 mm width were usually used for fixation in most cases. However, in certain cases, the lateral mass fixation was also incorporated as part of an occipitocervical or cervicothoracic fusion or as additional reinforcement for anterior constructs (Figure 2).

Intraoperatively, each screw position was assessed separately by imaging guidance before the final placement. In most cases, chips of auto-graft bone from the posterior elements were placed over the decorticated lateral masses and into the appropriate facet joints after screw insertion. Postoperatively, all patients were placed into a hard neck collar and underwent plain x-ray on the first postoperative day. Any intraoperative or postoperative clinical evidence of nerve root or vertebral artery violation was evaluated immediately by considering a thin-slice CT scan to evaluate all lateral mass screw positions, encroachment into the foramen transversarium, or into the neural foramen. Postoperatively, patients were evaluated clinically, and radiologically at 4 weeks, 2 months, 6 months, and 12 months. Follow-up, in this study, ranged from 3 months to 3 years. All myelopathic patients were discharged into a rehabilitation program.

No statistical tests were used, and only frequencies were calculated.
Results. The patient demographics are shown in Table 1; most patients were male, with an average age of 30-45 years. Some comorbidities were encountered and managed adequately. The 50 cases included in this report covered different pathologies, and the indications included: degenerative disease (38 cases), trauma (12 cases), and neoplastic spinal tumor (2 cases).

Intraoperatively, of the 405 lateral mass screws placed, there was no observation of vertebral artery injury or nerve root damage. Dural tear occurred in 4 cases that required intraoperative repair; all had severe cervical stenosis. The C7 could be adequately drilled with a steeper trajectory in 8 cases. Poor screw placement occurred in approximately 12 screws from lateral mass breakout in patients with osteoporotic bone that required conversion to another trajectory. Postoperatively, there was no clinical evidence of vertebral artery injury or further neurological damage. Five patients experienced a persistent C5 nerve root pain with a satisfactory postoperative CT scan showing no violation by the screws of the C4-C5 neural foramen, except in one female patient that required revision and her symptoms improved after surgical revision. The cause of postoperative C5 radicular pain from our experience seems to be due to aggressive foraminotomy or traction on the C5 nerve root because of posterior drift of the spinal cord that occurs after laminectomy. There were 3 cases with superficial infection, but no deep infection encountered. One case had CSF leak that we treated successfully with reinforcement sutures and lumber drain for 3 days. No patient experienced screw or rod pullouts. However, deep venous thrombosis was observed in 3 cases requiring inferior vena cava filter insertion and anti coagulation therapy; none of them developed pulmonary embolism or wound hematoma (Table 2). The results of the postoperative CT scan evaluation of screw position showed that 96% were position correctly, 4 (1%) screws violated the facet joint. Five (1.2%) screws breached the foramen transversarium by less than one mm, another 8 (1.9%) screws entered the neural foramen in variable levels. No screw breached the spinal canal. Follow up ranged from 3-38 months, with a mean of 18 months. Review after long term follow up of 3 years showed no patient developed adjacent segment symptoms or kyphosis. Patients with C5 radicular pain revealed a satisfactory response to facet joint block by using local steroid injection and amitriptyline pills. There was no instrumentation failure, and there was no late vascular or neural damage related to instrumentation.

Discussion. The biomechanical stability of the subaxial cervical spine can be compromised by numerous pathological disorders, and the restoration of stability...
Cervical laminectomy with lateral mass screw fixation ... Audat et al

may ultimately require fixation and placement of hard fixation devices. Posterior cervical spine stabilization is often administered to treat cervical instability secondary to traumatic injury, inflammatory lesions, neoplastic disease, infections, and in cases with previous laminectomy. However, numerous surgical techniques and advances in spinal instrumentation have evolved over the last years. Lateral mass fixation has world widely gained popularity among spine surgeons with low morbidity and satisfactory outcome.10,13 Sekhon12 reported the largest series of subaxial lateral mass screw fixation with a total of 1024 screws and no related neuro-vascular injury observed.

Many screw insertion pathways have been described since Roy-Camille et al1 first introduced lateral mass screw fixation. They advocated that the starting point is the midpoint of the lateral mass, and the direction of the screw is perpendicular to the posterior aspect of the cervical spine and 10° outward.1 Anderson et al8 recommended that the drilling point is one mm medial to the midpoint of the lateral mass, and that the screw is angled 30-40° up, and 10° lateral, while Jeanneret et al16 proposed a starting point 2-3 mm medial and superior to the midpoint of the lateral mass, and angling 30° superiorly and 25° laterally. An et al14 suggested angling 15-18° superiorly, and 30-33° laterally, with a starting point one mm medial to the center of the lateral mass. Pait et al16 divided the lateral mass into 4 quadrants, with the upper outer quadrant intended for screw insertion; in this way it is high likely to evade neurovascular injury.16 Finally, Sekhon12 recommended using Anderson et al’s starting point and then angling 25° laterally and superiorly; this way is safe and easily applied. With regards to the lateral mass of C7, this can be attained with a steeper course without the need for the C7 pedicle.

Frequent clinical and cadaver investigations have been carried out on lateral mass fixation, focusing on various trajectories to achieve proper placement of the screw and to avoid neural and vascular damage. Ebraheim et al17 in their cadaver study revealed the foramen transversarium is located in line with the midpoint of the lateral mass. Therefore, the direction of the screw should be lateral to avoid entry into the vertebral foramen.17,18 The work carried out by Xu et al19,20 concluded that An et al’s15 technique is highly likely to avoid neural damage compared with Jeanneret et al14 and Anderson et al’s8 techniques. However, the incidence of nerve root violation when Roy-Camille et al,1 Jeanneret et al,14 or Sekhon’s12 trajectories are used is around 3.6%; this is most likely because of the lengthy screw and more lateral trajectory.21

In terms of screw length, Roy-Camille et al1 recommended 14-17 mm. An et al15 suggested that a screw length of 11 mm is effective. Sekhon12 suggested that a 14-mm screw is safe and efficient based on the fact that the average vertical distance between the posterior midpoint of the lateral mass and the vertebral foramen from C3-C6 is approximately 9-12 mm. As a result, insertion of a 14 mm screw obliquely should cross the lateral mass smoothly. In addition to that, a 14 mm screw can be bicorticate, which adds further stability to the screw in place and causes no violation to the adjacent foramen. The cadaveric studies of Heller et al22 concluded that bicorticate fixation with a large diameter and non-self tapping screws had the utmost resistance to pullout.22-24

In conclusion, wide decompressive cervical laminectomy with lateral mass fixation is a safe and reliable method of posterior stabilization, and proper for a wide range of cervical pathologies. In most cases, utilizing 12-14 mm length and 3.5 mm diameter screws are usually adequate. Neuro-vascular co morbidities are usually avoidable. On short-term follow up, cervical decompressive laminectomy with lateral mass fixation is effective. However, the long-term efficacy and outcome of decompressive cervical laminectomy with lateral mass fusion needs further evaluation.

Acknowledgment. Special thanks to Dr. Mouwafaq Heis for his comments on the x-rays.

References

ILLUSTRATIONS, FIGURES, PHOTOGRAPHS

Four copies of all figures or photographs should be included with the submitted manuscript. Figures submitted electronically should be in JPEG or TIFF format with a 300 dpi minimum resolution and in grayscale or CMYK (not RGB). Printed submissions should be on high-contrast glossy paper, and submitted electronically should be in JPEG or TIFF format with a 300 dpi minimum resolution. Photographs will be accepted at the discretion of the Editorial Board.