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ABSTRACT

يشكلان  اللذان  الشوكي،  والحبل  الدماغ  يتأثر  أن  يمكن  الأهداف: 
الجهاز العصبي المركزي )CNS(، بمرض التهابي يعرف باسم التصلب 
اللويحي )MS(. يمكن للشبكات العصبية التلافيفية )CNN(، وهي 
من طرق الذكاء الاصطناعي، والتي تستطيع اكتشاف الالتهاب مبكرًًا 
 .)MRI(المغناطيسي للدماغ الرنين  من خلال تعلم الأنماط على صورة 
بالرنين  للتصوير  التشخيصي  الأداء  لاستقصاء  الدراسة  هذه  إجراء  تم 
في   ،CNN التلافيفي  العصبية  الشبكات  على  المعتمد  المغناطيسي 

تحديد وتصنيف وتقسيم آفات مرض التصلب اللويحي. 

 PubMed ،Web of Science المنهجية: تم استخدام محركات البحث
  Embase ،Cochrane Library ،CINAHL ،Google Scholar
المغناطيسي  بالرنين  التصوير  استخدام  إلى  تشير  التي  الأوراق  لاسترداد 
تشخيص  في   ،)CNN( التلافيفي  العصبية  الشبكات  على  المعتمد 
ومعامل  والحساسية  والنوعية  الدقة  تقييم  تم  اللويحي.  التصلب  مرض 

)DSC( في هذه الدراسة.

النتائج: في المجموع، تم تحديد 2174 دراسة و15 مقالة حققت معايير 
 CI: 95% ,98.81( 2D-3D CNN  دقة عالية  الاشتمال. قدمت 
 ،)CI: 98.42–99.10 95% ,98.76( وحساسية ،)99.13–98.50
آفات  تحديد  في   )CI: 98.22–99.12  95%  ,98.67( وخصوصية 
مرض التصلب العصبي اللويحي. فيما يتعلق بالتصنيف، كان معدل 
CI: 83.23– 95% ,91.38( الدقة الإجمالي مرتفعًًا بشكل ملحوظ
 )CI: 58.29–69.27 95%(  63.78 معدل DSC أظهر .)99.54
أن التصوير بالرنين المغناطيسي المستند إلى 2D-3D CNN أداء عالٍٍ 
النتائج  أن  الحساسية  تحليل  وأظهر  اللويحي.  التصلب  آفات  تجزئة  في 

متسقة، مما يشير إلى أن هذه الدراسة قوية. 

الخلاصة:  كشف هذا التحليل التلوي أن التصوير بالرنين المغناطيسي 
بأداء  يتمتع  اصطناعي  ذكاء  نظام  هو   2D-3D CNN على  المعتمد 

تشخيصي عالي ويمكنه التنبؤ بالمرض بسرعة وفعالية

Objectives: The brain and spinal cord, constituting 
the central nervous system (CNS), could be impacted 
by an inflammatory disease known as multiple sclerosis 
(MS). The convolutional neural networks (CNN), a 
machine learning method, can detect lesions early by 
learning patterns on brain magnetic resonance image 
(MRI). We performed this study to investigate the 
diagnostic performance of CNN based MRI in the 
identification, classification, and segmentation of MS 
lesions. 

Methods: PubMed, Web of Science, Embase, the 
Cochrane Library, CINAHL, and Google Scholar 
were used to retrieve papers reporting the use of 
CNN based MRI in MS diagnosis. The accuracy, 
the specificity, the sensitivity, and the Dice Similarity 
Coefficient (DSC) were evaluated in this study. 

Results: In total, 2174 studies were identified and only 
15 articles met the inclusion criteria. The 2D-3D CNN 
presented a high accuracy (98.81, 95% CI: 98.50–
99.13), sensitivity (98.76, 95% CI: 98.42–99.10), 
and specificity (98.67, 95% CI: 98.22–99.12) in the 
identification of MS lesions. Regarding classification, 
the overall accuracy rate was significantly high (91.38, 
95% CI: 83.23–99.54). A DSC rate of 63.78 (95% 
CI: 58.29–69.27) showed that 2D-3D CNN-based 
MRI performed highly in the segmentation of MS 
lesions. Sensitivity analysis showed that the results 
are consistent, indicating that this study is robust.

Conclusion: This metanalysis revealed that 2D-3D 
CNN based MRI is an automated system that has 
high diagnostic performance and can promptly and 
effectively predict the disease.	
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Multiple sclerosis (MS) is an inflammatory 
neurological condition that affects the central 

nervous system (CNS). Specifically in the brain’s white 
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matter, it causes demyelination and inflammation of the 
nerves. As a result, it can slow down or block messages 
between the brain and body. The World Health 
Organization (WHO) revealed that MS affects 2.8 
million people globally, and its prevalence is increasing 
every year.1 North America, Europe, and Australia have 
most of the MS patients.2 Fatigue, trouble walking, 
stiffness, weakness, vision issues, vertigo, cognitive 
changes, emotional changes, sadness, and more are all 
typical MS symptoms.3,4 To date, the etiology of MS 
remains unclear.5 The MS is thought to be caused by 
a confluence of hereditary and environmental factors.6 
Geographical location, vitamin D insufficiency, obesity, 
and smoking are examples of environmental factors 
that may be related to MS. The early detection of MS 
presents long-term benefits and could help researchers 
to find the best clinical strategy of this condition.7 
There are currently no signs, physical observations, or 
laboratory testing that can alone indicate if you have 
MS. There are several methods used to assess if you 
match the recognized standards for an MS diagnosis and 
to rule out other potential causes of the symptoms you 
are presently exhibiting. A thorough medical history, 
a neurologic examination, and numerous diagnostics, 
such as magnetic resonance imaging (MRI), spinal fluid 
analysis, and blood testing, are some of these measures.8 
Currently, the standard non-invasive diagnostic 
modality of MS uses MRI to visualize the lesions and 
presents a major role in controlling prognosis and 
development of the disease.9 The use of quantitative 
MRI techniques improves understanding of the extent 
of tissue damage and disease. These methods consist 
of: (1) MR spectroscopy, a non-invasive technique 
for examining the biochemical changes in MS;10 (2) 
magnetization transfer imaging which offers improved 
sensitivity and specificity for MS studies;11 (3) diffusion 
weighted imaging (DWI) and diffusion tensor imaging 
(DTI) which are quantitative MRI techniques, 
providing information on size, integrity, geometry, 
and orientation of tissue fibers;12 (4) dynamic contrast 
enhanced MRI which enables quantification of blood 
brain barrier disruption;13 and (5) dynamic susceptibility 
contrast MRI, which by injecting contrast agent into 
the patient produces quantitative maps of cerebral 
blood flow, cerebral blood volume, and temporal 
metrics like mean transit time.13 To date, the accurate 
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diagnosis of MS lesions presents some inconvenient. It 
was showed that MRI are difficult and time-consuming 
modalities in the diagnosis of MS because it is difficult 
to manually detect most of the lesions, especially within 
the grey matter.14 Moreover, interobserver variability 
can lead to inaccurate results, and the inability to 
compare studies from several modalities is a significant 
drawback. Also, methods that include human interplay 
may be characterized by substantial inter observer 
variability that may hamper the quality of the final 
results. Thus, new modalities were proposed to correctly 
detect MS lesions. Recently, deep learning (DL) tools, 
using artificial intelligence (AI), have developed for 
the diagnosis of various diseases, attracting many 
physicians’ attention.15,16 Different DL techniques 
using MRI were proposed for the diagnosis of MS. The 
principal advantage of DL methods is their capacity to 
deduct intrinsic image representation in MRI data.17 
Furthermore, DL does not need any manual guidance 
of the characteristic extraction step.18 

Since 2016, research on the use of DL architectures 
and MRI data for the diagnosis of MS have been 
conducted. Identification, segmentation, and 
classification of MS lesions were investigated by DL 
models. Conventional neural networks (CNN) are 
one of the most widely employed architectures in 
MS diagnosis.14 It learns characteristics of lesions 
using multinomial logistic regression to improve the 
diagnosis of MS.19 The majority of physicians used 
2D- and 3D-CNN architectures for classification and 
segmentation of MRI techniques. These networks’ 
capacity to reuse weights and lower parameter counts 
make them more compatible with 2D and 3D images.14 
Given that 3D images contain a lot more information 
than 2D images, it makes some sense that the 3D CNN 
will perform better than the 2D version. The CNN 
designs and/or training/testing dataset variances may 
be the root cause of the underlying variations. A 3D 
CNN requires far more processing power for training 
and inference than a 2D CNN.

The objective of this metaanalysis is to assess the 
effectiveness of MRI based 2D-3D CNN architectures 
on the diagnosis of MS.

Methods. Resources and search techniques. We 
followed the Preferred Reporting Items for Systematic 
Reviews and MetaAnalyses (PRISMA) standards to 
conduct this study.20 The following databases were 
used to find relevant papers published from January 
2010 until December 2022: Web of Science, PubMed, 
CINAHL, Google Scholar, Embase, and the Cochrane 
Library. Two independent reviewers performed a 



Deep learning-based MRI in predicting MS ... Daqqaq et al

www.nsj.org.sa 79    Neurosciences 2024; Vol. 29 (2)

systematic search using the following terms “multiple 
sclerosis” AND “magnetic resonance imaging” OR 
“MRI” AND “machine learning” OR “artificial 
intelligence” OR “deep learning” OR “convolutional 
neural networks”.

Selection criteria.After suppression of duplicates, 
title and abstract checks were done on pertinent papers. 
Papers were included if they reported the use of 2D- 
or 3D-CNN for the identification, classification, or 
segmentation of MS lesions. They were then fully read 
to ensure eligibility. 

Study inclusion criteria were: (1) Papers reporting 
MS lesions; (2) identification, classification, or 
segmentation of MS lesions using a CNN method; (3) 
use of 2D- or 3D-CNN architecture; (4) use of MRI 
as neuroimaging modality; (5) original research papers; 
and (6) articles reporting sufficient information about 
the performance of CNN.

Study exclusion criteria were: (1) Papers written in 
languages other than English; (2) letters, comments, 
opinions, guidelines, protocols, and review papers; 
(3) use of other architectures of CNN (4D-CNN 
Models, DeepSCAN); (4) overlapping study groups 
and duplicate publications; (5) studies with scant 
information on the results.

Data extraction. Two independent authors retrieved 
information from the eligible articles following the 
inclusion and exclusion criteria, and information were 
collected on a standardized data sheet that included: 
(1) article, (2) country, (3) dataset, (4) sample size, (5) 
diagnosis application, (6) neuroimaging modalities, (7) 

deep learning method, (8) deep learning architecture, 
and (9) performance.

Study Quality Assessment. The methodologic quality 
of the included studies was evaluated independently, by 
2 authors, using the Quality Assessment of Diagnostic 
Accuracy Studies-2 (QUADAS-2) tool, which includes 
four criteria that judge bias and applicability: “patient 
selection”, “index test”, “reference standard”, and “flow 
and timing”.21 Each is assessed in terms of risk of bias, 
and the first 3 domains were also assessed with respect 
to applicability. Each item is answered with “yes,” “no,” 
or “unclear.” The answer of “yes” means low risk of bias, 
whereas “no” or “unclear” means the opposite. Consensus 
was used to settle disagreements, while arbitration with 
a third reviewer was an option if necessary. RevMan 
Version 5.4 (Cochrane Collaboration, Oxford, United 
Kingdom) was used to visualize the quality assessment 
results.

Outcome measures. Accuracy: It measures the ability 
of 2D- or 3D-CNN to detect MS when it is present and 
detect the absence of MS when it is absent.

Sensitivity. It refers to 2D- or 3D-CNN’s ability to 
designate an individual with MS as positive.

Specificity. It refers to 2D- or 3D-CNN’s ability to 
correctly classify an individual without MS disease. 

Dice Similarity Coefficient (DSC): It is a spatial 
overlap index and a reproducibility validation metric 
that measures the similarity between two sets of binary 
segmentation results.

These measures were used for the :(i) identification 
of MS from healthy controls, (ii) classification of MS 
lesions from other brain lesions, and (iii) segmentation of 
images produced by MRI for measuring and visualizing 
the brain’s anatomical structures, for analyzing brain 
changes and for delineating MS lesions. 

Statistical analysis. Accuracy, sensitivity, specificity, 
and dice similarity coefficient measures were pooled 
from the included studies. Statistical analyses were 
conducted by RevMan Version 5.4 (Cochrane 
Collaboration, Oxford, United Kingdom). A p-value 
<0.05 was considered significant. Heterogeneity was 
assessed by the Cochrane chi-squared test. A p-value 
<0.05 confirms the presence of heterogeneity. In 
order to assess the influence of heterogeneity on the 
results, we calculated I2 values; I2 values ≥50% and 
p<0.05 indicated an important level of heterogeneity. 
If I2<50% and p>0.05, we used a fixed effects design; 
if not, a random effects model was adopted.22 We also 
performed subgroup and sensitivity analysis to identify 
the cause of heterogeneity. To assess publication bias, a 
visual examination of the symmetry in funnel plots was 
used. This second point was supported by Egger’s test 
using the SPSS V25 statistical package.Figure 1 -	PRISMA study flowchart.
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Table 1 - Features of included studies 

 Article Country Dataset Sample 
size Diagnosis Application Deep learning 

architecture Performance

Afzal el al, 201815 Australia John Hunter 
Hospital’s Dataset 21 -11 converted to MS

-10 did not convert to MS Classification 2D-CNN Accuracy

Afzal el al, 202116 Australia ISBI and MICCAI 
datasets 19 127 scans of MS Segmentation 2D-CNN

-DSC 
-Sensitivity
-Precision

Alijamaat et al, 202017 Iran

Laboratory of 
eHealth of the 
University of 

Cyprus

58 38 MS patients
20 healthy individuals Identification 2D-CNN

-Accuracy
-Precision
-Sensitivity
-Specificity

Aslani et al., 201918 Italy
-Private dataset 

-ISBI 2015 
longitudinal dataset

51

-37 patients from private 
dataset

-14 patients from ISBI 
2015 longitudinal dataset

Segmentation 2D-CNN DSC 

Aslani et al, 201919 Italy

ISBI 2015 
Longitudinal
MS Lesion 

Segmentation

19 MS Segmentation 2D-CNN

-DSC 
-Lesion-wise true-
positive -Lesion-
wise false-positive

Coronado et al, 202020 USA CombiRx 1,006 Relapsing–remitting MS Segmentation 3D-CNN

-DSC 
-Lesion-wise true-

positive 
-Lesion-wise false-

positive

Eitel et al, 201921 Germany Clinical 147 76 MS patients
71 healthy patients Classification 3D-CNN Accuracy

Kazancli et al, 201822 Spain Clinical 59 MS Segmentation 3D-CNN

-DSC 
-True Positive Rate

-False Discovery 
Rate

-Volume 
Difference

La Rosa et al, 201823 Switzerland Clinical 105

-Training dataset: 32 
patients with EDSS scores 

ranged from 1 to 2
-Test dataset: 73 patients 
with EDSS scores ranged 

from 1 to 7.5

Segmentation 3D-CNN

-DSC 
-Lesion-wise false 

positive 
-Lesion-wise true 

positive
-Volume difference

Roy et al, 201824 USA ISBI 2015 19

-Training dataset: 5 
patients with MS

-Test dataset: 14 patients 
with MS

Segmentation 2D-CNN DSC

Shrwan et al, 202125 India Clinical 38 MS Classification 2D-CNN
-Accuracy
-Precision

-Recall f_score

Siar et al, 201926 Iran Clinical 1111 320 MS patients
791 healthy patients Classification 2D-CNN

-Accuracy 
-Sensitivity 
-Specificity 

Valverde et al, 201827 Spain
MICCAI 2008 
MICCAI 2016

ISBI 2015
60 MS Segmentation 3D-CNN

-DSC 
-Sensitivity 
-Precision

Wang et al, 201828 China
eHealth

Laboratory and 
Private data

64 38 MS patients
26 healthy patients Identification 2D-CNN

-Accuracy 
-Sensitivity 
-Specificity

Zhang et al, 201829 China
eHealth

Laboratory and 
Private data

64 38 MS patients
26 healthy patients Identification 3D-CNN

-Accuracy 
-Sensitivity 
-Specificity

CNN: convolutional neural network, CombiRx: Combination Therapy in Patients with Relapsing-Remitting Multiple Sclerosis, DSC: Dice Similarity 
Coefficient, EDSS: Expanded Disability Status Scale, ISBI: International Symposium on Biomedical Imaging, MICCAI: Medical Image Computing and 

Computer Assisted Intervention, MS: Multiple sclerosis.
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Results. Identification of studies. Literature search 
identified 2174 papers to be screened, of which 691 
studies were duplicates and were removed. Hence, 1483 
papers were screened by title and abstract and 543 were 
excluded for no full text article available or language 
other than English. Finally, 940 studies of which 940 
studies were identified as potentially eligible and then 
were full text reviewed. Fifteen publications satisfied 
the eligibility requirements and were included in this 
study. The flowchart for the PRISMA study is shown 
in (Figure 1).

Characteristics of studies. The 15 studies were 
released between 2018 and 2021 and were came from 
nine nations: Australia (n=2), Iran (n=2), Italy (n=2), 
USA (n=2), China (n=2), Spain (n=2), Switzerland 
(n=1), India (n=1), and Germany (n=1). The number of 
patients ranged from 19 to 1111. Three, four, and eight 
studies reported the effectiveness of 2D- and 3D-CNN 
in the identification, classification, and segmentation of 
MS lesions, respectively. Study features are represented 
in (Table 1).
Table 1. Features of included studies. 

For the clinical diagnosis of MS, it is crucial to 
identify brain lesions utilizing MRI modalities. Medical 
professionals have significant challenges when trying 

Table 3 - 	 Subgroup analysis.

Parameter Number of 
studies 

Rate of DSC [95% 
CI]

Heterogeneity

Country

Australia 1 67.00 [66.80-67.20] Chi2 =2121.51
p<0.00001
I2 =100%

Switzerland 1 63.00 [62.80-63.20]
USA 2 66.70 [66.56-66.83]
Spain 2 55.25 [55.11-55.39]
Italy 2 68.17 [68.04-68.31]

DL architecture
2D CNN 4 64.94 [64.84-65.03] Chi2 =1067.22

p<0.00001
I2 =99.9%

3D CNN 4 62.63 [62.53-62.72]

Table 4 -	 Leave-one-out analysis of the rate of DSC.

Study excluded Rate of DSC (95% CI)
Afzal et al, 2021 63.32 (57.06-69.58)
Aslani et al, 2019 62.92 (56.88-68.96)
Aslani et al, 2019 63.38 (57.10-69.66)
Coronado et al, 2020 61.89 (57.20-66.58)
Kazancli et al, 2018 64.68 (58.67-70.69)
La Rosa et al., 2018 63.89 (57.55-70.23)
Roy et al., 2018 64.84 (58.96-70.71)
Valverde et al., 2018 65.32 (60.02-70.62)

Figure 2 -	Risk of bias and applicability concerns graph: review authors’ judgements about each domain presented 
as percentages across included studies

Figure 3 -	Pooled accuracy rates of 2D-3D CNN in the identification of MS lesions
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Table 2 - Summary of CADS developed for MS using MRI neuroimaging modalities and details of deep learning architectures.

Article Preprocessing 
toolbox

Others 
preprocessing Toolbox K 

Fold Details Classifier Loss function Optimizer

Afzal el al., 
201823 - data augmentation Keras - 6 convolutional layers + 6 Max 

Pooling - - Proposed

Afzal el al., 
202124 FMRIB Patch Extraction

Keras, 
Tensor 
Flow

-
2  convolutional layers  + 
2 Max Pooling + 1  fully 

connected

Multinomial 
LR - -

Alijamaat et 
al., 202025 -

data 
augmentation, 

Histogram 
Stretching, 

discrete wavelet 
transform

Keras, 
Tensor 
Flow

-
15 convolutional layers  + 

1 Average Pooling + 1  fully 
connected  + Dropout

Sigmoid - Adam

Aslani et al., 
201926 FMRIB

Decomposing 
3D Data Into 2D 

Images

Keras, 
Tensor 
Flow

4
3 Parallel ResNet50s + 5 

MMFF Blocks + 4 MSFU 
Blocks + MPR Block

Softmax Soft Dice Loss 
function Adam

Aslani et al., 
201927 - Data 

Augmentation Keras - ResNet50 + UFF Blocks - binary cross-
entropy Adadelta

Coronado et 
al., 202028 -

Magnetic 
Resonance 
Imaging 

Automatic 
Processing 
Pipeline

- -

5  convolutional  + 4 Context 
Modules + 3 Up Sampling 
Modules + 2 Localization 

Modules + 2 Segmentation 
+ 3 Strides + 3 De-Conv + 1 

Upscaling

Softmax
Multiclass 
Weighted 

Dice
Adam

Eitel et al., 
201929 FMRIB data augmentation

Keras, 
Tensor 
Flow

- 4  convolutional  + 4 Max-
Pooling + 4 Dropout Sigmoid - Adam

Kazancli et 
al., 201830 Free Surfer Patch Extraction Tensor 

Flow -

2  convolutional  + 2 
Average Pooling + 2  batch 
normalization  + 1  fully 
connected  + 1 Dropout

Softmax cross-entropy Adam

La Rosa et al., 
201831 FMRIB

Manual 
Segmentation, 

LeMan-PV
- -

4  convolutional  + 2 
Max Pooling + 4  batch 
normalization  + 1  fully 
connected + 1 Dropout

Softmax cross-entropy Adam

Roy et al., 
201832 - -

Tensor 
Flow, 
Keras

- 15  convolutional - - Adam

Shrwan et al., 
202133 - - Matlab 

R2020a -
3  convolutional  + 3  batch 

normalization + 3 Max Pooling 
+ 2  fully connected  

Softmax cross-entropy SGDM

Siar et al., 
201934 - - - - 25 Layers Softmax - -

Valverde et 
al., 201835 FMRIB -

Keras, 
Tensor 
Flow

-

4  convolutional  + 2 
Max-Pooling + 4  batch 
normalization  + 3  fully 
connected   + 3 Dropout

Softmax categorical
cross-entropy ADADELTA

Wang et al., 
201836 -

histogram 
stretching, data 
augmentation

- -
11  convolutional + 11  batch 
normalization  + 4 Pooling + 3  
fully connected   + 2 Dropout

Softmax - -

Zhang et al., 
201837 -

histogram 
stretching, data 
augmentation

- - 7 convolutional +7 Pooling + 3 
fully connected    + 3 Dropout Softmax - -

ADADELTA: adaptive learning rate method, Adam: A Method for Stochastic Optimization, CADS: Computer-aided detection software, CDMS: 
clinically defined multiple sclerosis, EDSS: Expanded Disability Status Scale, FMRIB: Functional Magnetic Resonance Imaging of the Brain, MMFF: 
multi-modal feature fusion block, , MRI: Magnetic resonance imaging, MRIAP: Magnetic Resonance Imaging Automatic Processing, MSFU: multi-

scale feature upsampling block, MPR: multi-planes reconstruction, Matlab: matrix laboratory, SGDM: Stochastic Gradient Descent Momentum, UFF: 
upsampling fused featu
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Table 2 - Summary of CADS developed for MS using MRI neuroimaging modalities and details of deep learning architectures.

Article Clinical data about cases and controls

Afzal el al., 201823 All patients included fulfilled the McDonald’s criteria. Out of these 21 patients, 10 converted to CDMS after one year, 
whereas 11 did not convert to CDMS after one year follow up.

Afzal el al., 202124

21 scans of 5 subjects are available for training purposes and already preprocessed with several steps like
skull stripping, denoising, bias correction, and co-registration. These 5 subjects have 4 time points and one subject having 5 
time points with a gap of approximately 1 year. These 21 scans are provided for training purposes only. For testing purposes, 

61 scans are provided from 14 subjects.

Alijamaat et al., 202025
MRI images of 38 MS patients whose lesions are labeled by several neurologists and approved by radiologists. To increase the 

number of images, MRI images
of 20 healthy individuals have been prepared by the authors and added to the existing data set.

Aslani et al., 201926 19 subjects divided into two sets, 5 subjects for training and 14 subjects for testing.Each subject has MRI data with a different 
number of time-points, normally ranging between 4 to 6. 

Aslani et al., 201927
37 MS patients (22 females and 15 males) with mean age 44,6±12,2 years. The patient clinical phenotypes were 24 relapsing 

remitting MS, 3 primary progressive MS and 10 secondary progressive MS. The mean EDSS was 3,3±2, the mean disease 
duration was 13.1±8,7 years and the mean lesion load was 6.2±5.7 ml.

Coronado et al., 
202028

-

Eitel et al., 201929

76 patients with relapsing-remitting MS according to the McDonald criteria 2010 and 71 healthy controls. Patients were 
excluded if they were outside the age range of 18 – 69 or did not have an MRI scan. All patients were examined under 

supervision of a board-certified neurologist at the NeuroCure Clinical Research Center (Charité – Universitätsmedizin Berlin) 
between January 2011 and July 2015.

Kazancli et al., 201830 -

La Rosa et al., 201831

-The training dataset was composed of 32 patients, 18 female / 14 male, mean age 34±10 years, with EDSS scores ranged 
from 1 to 2 (mean 1,6±0,3). Mean lesion volume is 0,11±0,40 ml (range 0.001-7.03 ml). Mean lesion load per case was 

6,0±7,2 ml (range 0,3-37,2 ml).
-The test dataset was made up of 73 patients, 50 females and 23 males (mean age 38±10 years). EDSS scores ranged from 
1 to 7.5 (mean 2,6±1,5). Mean lesion volume was 0,25±3,29 ml (range 0.002-159.827 ml). Mean lesion load per case was 

14,3±27,9 ml (range 0.2-162.9 ml).

Roy et al., 201832
128 patients enrolled in a natural history study of MS, 79 with relapsing-remitting, 30 with secondary progressive, and 19 

with primary pro-gressive MS.

Shrwan et al., 202133 -

Siar et al., 201934

200 patients, including tumors and MS and healthy patients. Totally, the number of trench data for the
brain tumor class was 461 images, 791 healthy patients, and 320 MS patients. The total number of data for the most 1286 
images and test data was 384 images. Pictures were collected in the range of 6 to 80 years old and the average age was 43.

Valverde et al., 201835
60 patients with a clinically isolated syndrome (Hospital Vall d’Hebron, Barcelona, Spain) were scanned on a 3 T Siemens 

with a 12-channel phased-array head coil (Trio Tim, Siemens, Germany)

Wang et al., 201836 -

Zhang et al., 201837

-There are 38 patients in the eHealth dataset. 676 slices associated with plaques were selected. All Brain lesions were identified 
and delineated by experienced MS neurologists and were confirmed by radiologists.

-Age-matched and gender-matched healthy controls (HC) of the eHealth dataset were included. The exclusion criteria 
for all volunteers were known neurological or psychiatric diseases, brain lesions, taking psychotropic medications, and 

contraindications to MR imaging.
ADADELTA: adaptive learning rate method, Adam: A Method for Stochastic Optimization, CADS: Computer-aided detection software, CDMS: 

clinically defined multiple sclerosis, EDSS: Expanded Disability Status Scale, FMRIB: Functional Magnetic Resonance Imaging of the Brain, MMFF: 
multi-modal feature fusion block, , MRI: Magnetic resonance imaging, MRIAP: Magnetic Resonance Imaging Automatic Processing,, MSFU: multi-

scale feature upsampling block, MPR: multi-planes reconstruction, Matlab: matrix laboratory, SGDM: Stochastic Gradient Descent Momentum, 
UFF: upsampling fused featu

to segment and categorize brain lesions obtained from 
MRI modalities and are at risk of making errors in 
diagnosis. Many elements, including artifacts, intensity 
heterogeneity, etc., have a negative impact on the MR 
image’s quality, which frequently results in disease 
misdiagnosis. The low level and high level preprocessing 

techniques used by MRI neuroimaging modalities to 
diagnose MS are covered in the sections that follow. 
Computer aided diagnosis system (CADS) performs 
better when high level preprocessing techniques are 
used in conjunction with low level preprocessing 
approaches. Data augmentation (DA), patch extraction, 
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and other techniques are among them. Table 2 provides 
a summary of the specific preprocessing data used by 
each article to diagnose MS utilizing DL techniques and 
MRI modalities. There are many toolboxes available for 
implementing DL models. Table 2 lists the tools used to 
create DL architectures. TensorFlow and Keras are the 
most significant DL tools. The final component of the 
DL-based CADS displayed in Table 2 is the activation 
function of the final layer used for classification in DL 
models. It can be noted that, the SoftMax function has 
yielded the highest classification performance.

Evaluation of the studies’ quality. A high risk of 
bias was revealed in approximately 25% of articles 
regarding patient selection and flow and timing criteria. 
In most of the papers (75%), a certain threshold was 
provided in relation to the index test criteria. Moreover, 
in terms of reference standard, a low risk of bias was 
detected in less than half of the included articles. We 
noticed that approximately similar results were found 
for applicability concerns (Figure 2). Indeed, the highest 
concerns were detected in reference standard criteria 
(33,33%), followed by patient selection (26,67%) and 
index test (20%).

Types of application and outcome measures 
Identification. Of the 15 included studies, three 
studies evaluated the diagnostic effectiveness of 2D- or 
3D-CNN in the identification of MS lesions using 
accuracy, sensitivity, and specificity (25,36,37). 

Accuracy. The heterogeneity was low (Chi2=4.23, 
p=0.12, I2=53%), so a fixed effect design was used. We 
revealed that the overall accuracy rate was significantly 
high at 98.81 (95% CI: 98.50–99.13; p<0.00001) 
(Figure 3).

Sensitivity. The heterogeneity was low (Chi2=5.17, 
p=0.08, I2=61%), so we used a fixed effect model. The 
analysis revealed that the overall sensitivity rate was 
significantly high at 98.76 (95% CI: 98.42–99.10; 
p<0.00001) (Figure 4).

Specificity. The heterogeneity was low (Chi2=1.63, 
p=0.44, I2=0%), so we used a fixed effect model. The 
analysis revealed that the overall specificity rate was 
significantly high at 98.67 (95% CI: 98.22–99.12; p< 
0.00001) (Figure 5).

Classification. Using accuracy, four of the 15 
included studies examined the diagnostic efficacy of 2D- 
or 3D-CNN in the classification of MS lesions.23,29,33,34

Accuracy. The heterogeneity was important (Chi2 = 
2995.26, p<0.00001, I2=100%), so we used a random 
effects model. The analysis revealed that the overall 
accuracy rate was significantly high at 91.38 (95% CI: 
83.23–99.54; p<0.00001) (Figure 6).

Figure 6 pooled accuracy rates of 2D-3D CNN in 
the classification of MS lesions

Segmentation. Eight of the 15 included studies 
examined the diagnostic performance of 2D- or 
3D-CNN in segmenting MS lesions using the 
DSC.24,26–28,30–32,35 

Dice Similarity Coefficient. The heterogeneity was 
important (Chi2=43991.74, p<0.00001, I2 = 100%), so 
we used a random effects model. The analysis showed 
that the overall DSC was significantly high at 63.78 
(95% CI: 58.29–69.27; p<0.00001) (Figure 7).

Subgroup and sensitivity analyses. Subgroup and 
sensitivity analyses were performed for DSC outcome. 
The small number of articles led to the exclusion of the 
remaining outcomes. Exploratory subgroup analysis 
proved that both country and DL architecture were a 
cause of heterogeneity for DSC outcome (p<0.00001) 
(Table 3). For the subgroup analysis of country, the 
highest DSC was detected in Italy (68,17%, 95%CI: 
68.04, 68.3), followed by Australia (67.00%, 95%CI: 
66.80, 67.20) and USA (66.70% 95%CI: 66.56, 
66.83). However, the lowest DSC was revealed in 
Spain (55.25%, 95%CI: 55.11, 55.39). Regarding DL 
architecture, 2D CNN showed a higher DSC (64.94%, 
95%CI: 64.84, 65.03) than 3D CNN did (62.63%, 
95%CI: 62.53, 62.72).

A sensitivity analysis was carried out to determine 
the source of heterogeneity in the pooled rate of 
DSC. The finding showed that the outcomes were not 
significantly different between studies, suggesting that 
this metaanalysis is reliable. Indeed, the rate of DSC 
was ranged from 61.89% (95% CI: 57.20, 66.58) to 
65.32% (95% CI: 60.02, 70.62) (Table 4).

The results of Egger’s test showed that there was 
no publication bias for the DSC outcome (p>0.05). 
Similarly, the distribution of articles displayed symmetry 
in the funnel plot (Figure 8). The small number of 
articles led to the exclusion of the remaining out-comes.
Figure 8. Funnel plot of DSC in studies investigating 
the segmentation of MS lesions

Discussion. The medical sciences include many 
fascinating research areas, including disease prediction. 
The application of computer vision has led to the 
suggestion of numerous tools. The CNS is impacted 
by diseases that are ongoing, autoimmune, and 
demyelinating, such as MS. This harms the myelin 
sheath, inducing changes in the structure of the 
brain.38 Consequently, it can cause disability in young 
people, which has a significant effect on the quality of 
life.39 MS is a condition that has significant clinical 
implications, for which automated detecting algorithms 
are required to aid physicians in its early detection and 
faster implementation of specialist treatment. During 
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the past decades, CNN, which are a ML method, have 
become amongst the most widely used tools in image 
segmentation tasks with high efficiency.40 

The results of this analysis show that there has been 
an increase in interest over the past several years in using 
DL approaches for segmentation and classification of 
MS imaging investigations.

This metaanalysis evaluates the diagnostic 
effectiveness of 2D-3D CNN architectures using MRI 
data in the diagnosis of MS. The findings obtained 
revealed that the pooled results of 2D-3D CNN 

methods present a great specificity, sensitivity, and 
accuracy (>98%) in the identification of MS lesions. 
Compared to conventional techniques, they have 
excellent results with MS lesions.41 For example, gray 
level cooccurrence matrix (GLCM) and hybrid image 
enhancement (HIE), which are traditional methods, 
presented accuracy values of 95.14% and 95.98%, 
respectively.42,43 DL-based algorithms outperform 
conventional image processing techniques in terms of 
specificity, sensitivity, and accuracy requirements. As a 
result, 2D-3D CNN networks can effectively extract the 

Figure 4 -	Pooled sensitivity rates of 2D-3D CNN in the identification of MS lesions.

Figure 5 -	Pooled specificity rates of 2D-3D CNN in the identification of MS lesions.

Figure 6 -	Pooled accuracy rates of 2D-3D CNN in the classification of MS lesions.
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features of MS lesions from MRI images. The quantity 
of network parameters that significantly affect network 
training time is another factor that can be considered 
in deep networks. It was revealed that 2D-3D CNN 
method with a smaller number of parameters provides 
better accuracy than other methods (traditional or 
DL).25 Similarly, three techniques: stochastic pooling, 
dropout, and batch normalization, associated with 
a 14-layer CNN, were developed by Wang et al. for 
MS identification.36 Compared to other cutting-edge 
methods, the suggested 2D-CNN method showed the 
best performance in terms of sensitivity, specificity, 
precision, and accuracy.36

In order to diagnose and treat MS disease as early 
as possible, Wang et al. constructed a 14-layer CNN 
together with batch normalization, dropout, and 
stochastic pooling algorithms.36 During the current 

investigation, imaging data were collected on 26 
healthy volunteers and 38 MS patients from the 
eHealth laboratory. Results showed that the proposed 
14-layer CNN network performed better than all of 
the aforementioned techniques when compared to 
maximum pooling, average pooling, five traditional AI 
methods, and a deep learning method. The proposed 
method had sensitivity, specificity, and accuracy of 
98.77%, 98.76%, and 98.77%, respectively. On the 
other hand, Zhang et al. proposed a new 10-layer 
CNN that combines dropout and parametric rectified 
linear unit algorithms.37 The results outperformed 
four cutting-edge methods and presented sensitivity, 
specificity, and accuracy of 98.22%, 98.24%, and 
98.23%, respectively.

Concerning classification of MS lesions, different 
2D- and 3D-CNN methods were suggested to support 
categorization choices for clinical reviews, confirm 
diagnosis relevant traits, and maybe gather more 
knowledge about MS condition. Afzal et al23 proposed 
an automated 2D-CNN algorithm using DL that 
can forecast whether a clinically isolated illness would 
develop into MS within a year of follow up. Additionally, 
it was computationally simple and resilient in nature.
McKinley et al44 obtained sensitivity up to 72% in 
MS classification on 2 separate external validation sets. 
Similarly, Narayana et al45 achieved a sensitivity up to 
72% on patient‑basis versus sensitivity up to 78% on 
a slice‑basis in the same study. In this context, Eitel 
et al. built a methodology to reveal CNN choices for 
classification of MS lesions based on FLAIR data and 
layer-wise relevance propagation.29 Specifically, they 
showed that CNN models are capable of successfully 
separating MS patients and controls on a typically 

Figure 7-	 Pooled DSC of 2D-3D CNN in the segmentation of MS lesions.

Figure 8 -	Funnel plot of DSC in studies investigating the segmentation 
of MS lesions
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sized neuroimaging cohort (Accuracy=87.04%). 
Furthermore, layer-wise relevance propagation is 
extremely helpful in both explaining individual network 
decisions as well as generally assisting in determining 
whether CNN models have learned significant features. 

Similarly, both 2D- and 3D-CNN models showed 
robust segmentation of MS lesions. Rehan Afzal et al. 
developed a 2D patch-wise CNN that can segment 
MS lesions more precisely and firmly.24 This method 
showed consistently higher sensitivity and precision 
than other traditional methods. With a precision of up 
to 90%, it can precisely and dependably distinguish 
MS lesions from images taken by different MRI 
scanners. As a result, doctors may automatically 
segment lesions without wasting time, which improves 
disease monitoring. In another study, Coronado et al. 
showed excellent segmentation by enhancing lesions 
using a 3D-CNN model and multispectral MRI.28 
With a testing DSC of 91%, Narayana et al.45 offered 
a FLAIR based lesion segmentation, and Sander et al.46 
used a multidimensional gated recurrent unit model 
to achieve performance up to DSC 97%. To address 
the issue that MS lesions vary greatly in size and that 
DSC is not differentiable, making it unable to employ 
directly Wang et al.47 segregate large and small lesions 
for gradient descent and suggest a new activation 
function to ease network training. Aslani et al.27 employ 
2D slices as input and a 2D encoder-decoder network 
to segment MS lesions in order to avoid issues like 
patch-wise approaches’ oversight of global information 
and 3D segmentation’s overfitting because of the class 
imbalance issue.

Based on the rising accessibility of larger datasets, 
the development of computer aided diagnosis methods 
for the early detection of MS disease is of utmost 
relevance. Such systems, which offer cloud based AI 
services, can improve physicians’ diagnostic experiences 
and present improved diagnostic prospects, particularly 
in remote places where access to specialists is typically 
limited. In order to accomplish the objective of using 
AI algorithms in clinical practice in the actual world, 
all of these directions for the future of DL in MS must 
foster explainability and trustworthiness in addition to 
greater performance.

Strengths and limitations. This study investigates 
the diagnostic performance of CNN-based MRI in 
the identification, classification, and segmentation of 
MS lesions, taking studies from various countries into 
consideration. In the current investigation, we searched 

six different databases. The key advantages of this paper 
are the wide scope of datasets and the acceptable sample 
size. We also demonstrated the superior caliber of the 
included research, which had an acceptable quality 
grade. Our systematic review and metaanalysis have few 
limitations. First, there were limited papers included in 
this work. Moreover, a high heterogeneity was detected 
across papers detailing diagnostic effectiveness of 
2D-3D CNN in the segmentation and classification of 
MS lesions. Regarding the subgroup analysis, variations 
in the study locations and DL architectures could be 
sources of heterogeneity. The results’ interpretability 
may change as a result of substantial heterogeneity, 
which is expected in metaanalysis investigations.48 
Hence, the results of this metaanalysis need to be 
carefully considered. Despite these drawbacks, the 
main advantage of this work is the high methodological 
quality of the studies. Furthermore, the sensitivity 
analysis demonstrated that the calculated DSC rate 
was accurate and unaffected by the omission of a single 
study.

Conclusion. The present metaanalysis shows that 
2D-3D CNN algorithms using MRI data present 
excellent performance in the identification, classification, 
and segmentation of MS lesions. However, using them 
directly in clinical practice is still challenging. Hence, 
more DL algorithms should be developed and improved 
for more efficacious and rapid MS diagnosis.
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