Article | Country | Dataset | Sample size | Diagnosis | Application | Deep learning architecture | Performance |
Afzal el al, 201815 | Australia | John Hunter Hospital’s Dataset | 21 | -11 converted to MS-10 did not convert to MS | Classification | 2D-CNN | Accuracy |
Afzal el al, 202116 | Australia | ISBI and MICCAI datasets | 19 | 127 scans of MS | Segmentation | 2D-CNN | -DSC-Sensitivity-Precision |
Alijamaat et al, 202017 | Iran | Laboratory of eHealth of the University of Cyprus | 58 | 38 MS patients 20 healthy individuals | Identification | 2D-CNN | -Accuracy-Precision-Sensitivity-Specificity |
Aslani et al., 201918 | Italy | -Private dataset-ISBI 2015 longitudinal dataset | 51 | -37 patients from private dataset -14 patients from ISBI 2015 longitudinal dataset | Segmentation | 2D-CNN | DSC |
Aslani et al, 201919 | Italy | ISBI 2015 Longitudinal MS Lesion Segmentation | 19 | MS | Segmentation | 2D-CNN | -DSC-Lesion-wise true-positive -Lesion-wise false-positive |
Coronado et al, 202020 | USA | CombiRx | 1,006 | Relapsing–remitting MS | Segmentation | 3D-CNN | -DSC-Lesion-wise true-positive-Lesion-wise false-positive |
Eitel et al, 201921 | Germany | Clinical | 147 | 76 MS patients 71 healthy patients | Classification | 3D-CNN | Accuracy |
Kazancli et al, 201822 | Spain | Clinical | 59 | MS | Segmentation | 3D-CNN | -DSC-True Positive Rate-False Discovery Rate-Volume Difference |
La Rosa et al, 201823 | Switzerland | Clinical | 105 | -Training dataset: 32 patients with EDSS scores ranged from 1 to 2 -Test dataset: 73 patients with EDSS scores ranged from 1 to 7.5 | Segmentation | 3D-CNN | -DSC-Lesion-wise false positive-Lesion-wise true positive-Volume difference |
Roy et al, 201824 | USA | ISBI 2015 | 19 | -Training dataset: 5 patients with MS -Test dataset: 14 patients with MS | Segmentation | 2D-CNN | DSC |
Shrwan et al, 202125 | India | Clinical | 38 | MS | Classification | 2D-CNN | -Accuracy-Precision-Recall f_score |
Siar et al, 201926 | Iran | Clinical | 1111 | 320 MS patients 791 healthy patients | Classification | 2D-CNN | -Accuracy-Sensitivity-Specificity |
Valverde et al, 201827 | Spain | MICCAI 2008 MICCAI 2016 ISBI 2015 | 60 | MS | Segmentation | 3D-CNN | -DSC-Sensitivity-Precision |
Wang et al, 201828 | China | eHealth Laboratory and Private data | 64 | 38 MS patients 26 healthy patients | Identification | 2D-CNN | -Accuracy-Sensitivity-Specificity |
Zhang et al, 201829 | China | eHealth Laboratory and Private data | 64 | 38 MS patients 26 healthy patients | Identification | 3D-CNN | -Accuracy-Sensitivity-Specificity |
CNN: convolutional neural network, CombiRx: Combination Therapy in Patients with Relapsing-Remitting Multiple Sclerosis, DSC: Dice Similarity Coefficient, EDSS: Expanded Disability Status Scale, ISBI: International Symposium on Biomedical Imaging, MICCAI: Medical Image Computing and Computer Assisted Intervention, MS: Multiple sclerosis.