Skip to main content
Log in

Perfusion weighted magnetic resonance imaging to distinguish the recurrence of metastatic brain tumors from radiation necrosis after stereotactic radiosurgery

  • Clinical Study - Patient Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

After stereotactic radiosurgery (SRS) for brain metastases, delayed radiation effects with mass effect may occur from several months to years later, when tumors may also recur. Aggressive salvage treatment would be beneficial for patients with recurrence, but may be contraindicated for those with dominant radiation effect. Conventional magnetic resonance (MR) imaging does not provide sufficient information to differentiate delayed radiation effects from tumor recurrence. Positron emission tomography, MR spectroscopy, and other modalities sometimes may lead to false findings of tumor recurrence. We prospectively applied perfusion MR imaging for the management strategy after SRS because it gives microvascular information about the lesions. Twenty-eight lesions were enlarged on serial MR images in 27 patients 2–35 months (median: 11.8 months) after SRS for metastatic brain tumors. Each patient underwent MR perfusion imaging within a month after appearance of the growing enhanced lesion. To calculate the relative cerebral blood volume ratio (rCBV ratio), the regions of interest were located in the enhanced areas on the contrast-enhanced T1-weighted images and compared with the corresponding contralateral normal brain tissue. They were then followed-up with scheduled MR images with gadolinium enhancement at 1 to 2-month intervals afterward. Lesions which progressively increased in size on MR images were diagnosed as recurrences; lesions which disappeared or decreased in size were diagnosed as radiation necrosis. In addition, two lesions surgically removed were diagnosed by pathological examination. Follow-up MR images revealed that 21 of 28 lesions were radiation necrosis. Five lesions were diagnosed as recurrence on MR images, and the other two lesions were revealed as recurrence by pathological examination. An rCBV ratio of greater than 2.1 provided the best sensitivity and specificity for identifying recurrent metastatic tumors, at 100 and 95.2%, respectively. Perfusion MR imaging provides useful, less invasive and in-vivo information for management of growing lesions after SRS, and rCBV may be a valuable index for this diagnostic purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Patchell RA (2003) The management of brain metastases. Cancer Treat Rev 29:533–540

    Article  PubMed  Google Scholar 

  2. Koike Y, Hosoda H, Ishiwata Y, Sakata K, Hidaka K (1994) Effect of radiosurgery using Leksell gamma unit on metastatic brain tumor—autopsy case report. Neurol Med Chir (Tokyo) 34:534–537

    Article  CAS  Google Scholar 

  3. Chernov M, Hayashi M, Izawa M, Ochiai T, Usukura M, Abe K, Ono Y, Muragaki Y, Kubo O, Hori T, Takakura K (2005) Differentiation of the radiation-induced necrosis and tumor recurrence after gamma knife radiosurgery for brain metastases: importance of multi-voxel proton MRS. Minim Invasive Neurosurg 48:228–234

    Article  CAS  PubMed  Google Scholar 

  4. Graves EE, Nelson SJ, Vigneron DB, Verhey L, McDermott M, Larson D, Chang S, Prados MD, Dillon WP (2001) Serial proton MR spectroscopic imaging of recurrent malignant gliomas after gamma knife radiosurgery. Am J Neuroradiol 22:613–624

    CAS  PubMed  Google Scholar 

  5. Langleben DD, Segall GM (2000) PET in differentiation of recurrent brain tumor from radiation injury. J Nucl Med 41:1861–1867

    CAS  PubMed  Google Scholar 

  6. Terakawa Y, Tuyuguchi N, Iwai Y, Yamanaka K, Higashiyama S, Takami T, Ohata K (2008) Diagnostic accuracy of 11C-Methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 49:694–699

    Article  PubMed  Google Scholar 

  7. Jain R, Scarpace L, Ellika S, Schultz LR, Rock JP, Rosenblum ML, Patel SC, Lee TY, Mikkelsen T (2007) First-pass perfusion computed tomography: initial experience in differentiating recurrent brain tumors from radiation effects and radiation necrosis. Neurosurgery 61:778–786

    Article  PubMed  Google Scholar 

  8. Sugahara T, Korogi Y, Tomiguchi S, Shigematsu Y, Ikushima I, Kira T, Liang L, Ushio Y, Takahashi M (2000) Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am J Neuroradiol 21:901–909

    CAS  PubMed  Google Scholar 

  9. Law M, Yang S, Wang H, Babb JS, Johnson G, Cha S, Knopp EA, Zagzag D (2003) Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 24:1989–1998

    PubMed  Google Scholar 

  10. Hoefnagels FWA, Lagerwaard FJ, Sanchez E, Haasbeek CJA, Knol DL, Slotman BJ, Vandertop P (2009) Radiological progression of cerebral metastases after radiosurgery: assessment of perfusion MRI for differentiating between necrosis and recurrence. J Neurol 256:878–887

    Article  PubMed  Google Scholar 

  11. Ding B, Ling HW, Chen KM, Jiang H, Zhu YB (2006) Comparison of cerebral blood volume and permeability in preoperative grading of intracranial glioma using CT perfusion imaging. Neuroradiology 48:773–781

    Article  PubMed  Google Scholar 

  12. Mills SJ, Patankar TA, Haroon HA, Balériaux D, Swindell R, Jackson A (2006) Do cerebral blood volume and contrast transfer coefficient predict prognosis in human glioma? AJNR Am J Neuroradiol 27:853–858

    CAS  PubMed  Google Scholar 

  13. Ellika SK, Jain R, Patel SC, Scarpace L, Schultz LR, Rock JP, Mikkelsen T (2007) Role of perfusion CT in glioma grading and comparison with conventional MR imaging features. AJNR Am J Neuroradiol 28:1981–1987

    Article  CAS  PubMed  Google Scholar 

  14. Barajas RF, Chang JS, Sneed PK, Segal MR, McDermott MW, Cha S (2009) Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol 30:367–372

    Article  CAS  PubMed  Google Scholar 

  15. Aronen HJ, Gazit IE, Louis DN, Buchbinder BR, Pardo FS, Weisskoff RM, Harsh GR, Cosgrove GR, Halpern EF, Hochberg FH (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191:41–51

    CAS  PubMed  Google Scholar 

  16. Provenzale JM, Wang GR, Brenner T, Petrella JR, Sorensen AG (2002) Comparison of permeability in high-grade and low-grade brain tumors using dynamic susceptibility contrast MR imaging. Am J Roentgenol 178:711–716

    Google Scholar 

  17. Schmainda KM, Rand SD, Joseph AM, Lund R, Ward BD, Pathak AP, Ulmer JL, Baddrudoja MA, Krouwer HGJ (2004) Characterization of a first-pass gradient-echo spin-echo method to predict brain tumor grade and angiogenesis. AJNR Am J Neuroradiol 25:1524–1532

    PubMed  Google Scholar 

  18. Weber MA, Thilmann C, Lichy MP, Gunther M, Delorme S, Zuna I, Bongers A, Schad LR, Debus J, Kauczor HU, Essig M, Schlemmer HP (2004) Assessment of irradiated brain metastases by means of arterial spin-labeling and dynamic susceptibility-weighted contrast-enhanced perfusion MRI: initial results. Invest Radiol 39:277–287

    Article  PubMed  Google Scholar 

  19. Whitmore RG, Krejza J, Kpoor GS, Huse J, Woo JH, Bloom S, Lopinto J, Wolf RL, Judy K, Rosenfeld MR, Biegel JA, Melhem ER, O’Rourke DM (2007) Prediction of oligodendroglial tumor subtype and grade using perfusion weighted magnetic resonance imaging. J Neurosurg 107:600–609

    Article  CAS  PubMed  Google Scholar 

  20. Andrews DW, Scott CB, Sperduto PW, Flanders AE, Gaspar LE, Schell MC, Werner-Wasik M, Demas W, Ryu J, Bahary JP, Souhami L, Rotman M, Mehta MP, Curran WJ Jr (2004) Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: phase III results of the RTOG 9508 randomised trial. Lancet 22:1665–1672

    Article  Google Scholar 

  21. Rabinov JD, Lee PL, Barker FG, Louis DN, Harsh GR, Cosgrove GR, Chiocca EA, Thornton AF, Loeffler JS, Henson JW, Gonzalez RG (2002) In vivo 3-T MR spectroscopy in the distinction of recurrent glioma versus radiation effects: initial experience. Radiology 225:871–879

    Article  CAS  PubMed  Google Scholar 

  22. Chao ST, Suh JH, Raja S, Lee SY, Barnett G (2001) The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer 96:191–197

    Article  CAS  PubMed  Google Scholar 

  23. Belohlavek O, Simonova G, Kantorova I, Novotny J Jr, Liscak R (2003) Brain metastases after stereotactic radiosurgery using the Leksell gamma knife: can FDG PET help to differentiate radionecrosis from tumour progression? Eur J Nucl Med Mol Imaging 30:96–100

    Article  CAS  PubMed  Google Scholar 

  24. Tsuyuguchi N, Sunada I, Iwai Y, Yamanaka K, Tanaka K, Takami T, Otsuka Y, Sakamoto S, Ohata K, Goto T, Hara M (2003) Methionine positron emission tomography of recurrent metastatic brain tumor and radiation necrosis after stereotactic radiosurgery: is a differential diagnosis possible? J Neurosurg 98:1056–1064

    Article  PubMed  Google Scholar 

  25. Roelcke U, Radü E, Ametamey S, Pellikka R, Steinbrich W, Leenders KL (1996) Association of rubidium and C-methionine uptake in brain tumors measured by positron emission tomography. J Neurooncol 27:163–171

    Article  CAS  PubMed  Google Scholar 

  26. Kahn D, Follett KA, Bushnell DL, Nathan MA, Piper JG, Madsen M, Kirchner PT (1994) Diagnosis of recurrent brain tumor: value of 201Tl SPECT vs 18F-fluorodeoxyglucose PET. AJR Am J Roentgenol 163:1459–1465

    CAS  PubMed  Google Scholar 

  27. Serizawa T, Saeki N, Higuchi Y, Ono J, Matsuda S, Sato M, Yanagisawa M, Iuchi T, Nagano O, Yamaura A (2005) Diagnostic value of thallium-201 chloride single-photon emission computerized tomography in differentiating tumor recurrence from radiation injury after gamma knife surgery for metastatic brain tumors. J Neurosurg 102(Suppl):266–271

    Article  PubMed  Google Scholar 

  28. Lev MH, Rosen BR (1999) Clinical applications of intracranial perfusion MR imaging. Neuroimaging Clin N Am 9:309–331

    CAS  PubMed  Google Scholar 

  29. Rosen BR, Belliveau JW, Vevea JM, Brady TJ (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14:249–265

    Article  CAS  PubMed  Google Scholar 

  30. Barbier EL, Lamalle L, Décorps M (2001) Methodology of brain perfusion imaging. J Magn Reson Imaging 13:496–520

    Article  CAS  PubMed  Google Scholar 

  31. Toyooka M, Kimura H, Uematsu H, Kawamura Y, Takeuchi H, Itoh H (2008) Tissue characterization of glioma by proton magnetic resonance spectroscopy and perfusion-weighted magnetic resonance imaging: glioma grading and histological correlation. Clin Imaging 32:251–258

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Mr. Piers Vigers for his assistance in editing the manuscript, to Dr. Satoshi Nakasu, M.D., Division of Neuro-oncology, Kusatsu General Hospital, for his special advice, and Dr. Reiko Watanabe, M.D., Division of Pathology, Shizuoka Cancer Center, for her support in pathological description.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Mitsuya.

Additional information

This paper was presented at the Eighth Biannual Congress of the International Stereotactic Radiosurgery Society, in San Francisco, June 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitsuya, K., Nakasu, Y., Horiguchi, S. et al. Perfusion weighted magnetic resonance imaging to distinguish the recurrence of metastatic brain tumors from radiation necrosis after stereotactic radiosurgery. J Neurooncol 99, 81–88 (2010). https://doi.org/10.1007/s11060-009-0106-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-009-0106-z

Keywords

Navigation