Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

POLG-related disorders and their neurological manifestations

Abstract

The POLG gene encodes the mitochondrial DNA polymerase that is responsible for replication of the mitochondrial genome. Mutations in POLG can cause early childhood mitochondrial DNA (mtDNA) depletion syndromes or later-onset syndromes arising from mtDNA deletions. POLG mutations are the most common cause of inherited mitochondrial disorders, with as many as 2% of the population carrying these mutations. POLG-related disorders comprise a continuum of overlapping phenotypes with onset from infancy to late adulthood. The six leading disorders caused by POLG mutations are Alpers–Huttenlocher syndrome, which is one of the most severe phenotypes; childhood myocerebrohepatopathy spectrum, which presents within the first 3 years of life; myoclonic epilepsy myopathy sensory ataxia; ataxia neuropathy spectrum; autosomal recessive progressive external ophthalmoplegia; and autosomal dominant progressive external ophthalmoplegia. This Review describes the clinical features, pathophysiology, natural history and treatment of POLG-related disorders, focusing particularly on the neurological manifestations of these conditions.

Key points

  • POLG encodes the catalytic subunit of DNA polymerase γ, the enzyme responsible for replicating the mitochondrial DNA (mtDNA).

  • Mutations in POLG are associated with a clinical continuum of heterogeneous syndromes, ranging from infantile-onset epilepsies and liver failure to late-onset ophthalmoplegia and muscle weakness.

  • POLG mutations are a frequent cause of mitochondrial disease, particularly mitochondrial epilepsy, polyneuropathy, ataxia and progressive external ophthalmoplegia.

  • POLG mutations can lead to depletion of the mtDNA and/or accumulation of multiple mtDNA deletions.

  • To a limited extent, clinical phenotypes correlate with the mtDNA phenotype (depletion or deletions).

  • No effective disease-modifying therapies are currently available for POLG-related disease, and symptomatic therapies are the mainstay of treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The clinical spectrum of POLG-related disease.
Fig. 2: POLG mutations.

Similar content being viewed by others

References

  1. Kukat, C. et al. Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA. Proc. Natl Acad. Sci. USA 108, 13534–13539 (2011).

    CAS  PubMed  Google Scholar 

  2. Korhonen, J. A., Pham, X. H., Pellegrini, M. & Falkenberg, M. Reconstitution of a minimal mtDNA replisome in vitro. EMBO J. 23, 2423–2429 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Copeland, W. C. & Longley, M. J. Mitochondrial genome maintenance in health and disease. DNA Repair 19, 190–198 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bebenek, K. & Kunkel, T. A. Functions of DNA polymerases. Adv. Protein Chem. 69, 137–165 (2004).

    CAS  PubMed  Google Scholar 

  5. Ropp, P. A. & Copeland, W. C. Cloning and characterization of the human mitochondrial DNA polymerase, DNA polymerase gamma. Genomics 36, 449–458 (1996).

    CAS  PubMed  Google Scholar 

  6. Sweasy, J. B., Lauper, J. M. & Eckert, K. A. DNA polymerases and human diseases. Radiat. Res. 166, 693–714 (2006).

    CAS  PubMed  Google Scholar 

  7. Graziewicz, M. A., Longley, M. J. & Copeland, W. C. DNA polymerase gamma in mitochondrial DNA replication and repair. Chem. Rev. 106, 383–405 (2006).

    CAS  PubMed  Google Scholar 

  8. Kaguni, L. S. DNA polymerase gamma, the mitochondrial replicase. Annu. Rev. Biochem. 73, 293–320 (2004).

    CAS  PubMed  Google Scholar 

  9. Lim, S. E., Longley, M. J. & Copeland, W. C. The mitochondrial p55 accessory subunit of human DNA polymerase gamma enhances DNA binding, promotes processive DNA synthesis, and confers N-ethylmaleimide resistance. J. Biol. Chem. 274, 38197–38203 (1999).

    CAS  PubMed  Google Scholar 

  10. Young, M. J., Humble, M. M., DeBalsi, K. L., Sun, K. Y. & Copeland, W. C. POLG2 disease variants: analyses reveal a dominant negative heterodimer, altered mitochondrial localization and impaired respiratory capacity. Hum. Mol. Genet. 24, 5184–5197 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Johnson, A. A., Tsai, Y., Graves, S. W. & Johnson, K. A. Human mitochondrial DNA polymerase holoenzyme: reconstitution and characterization. Biochemistry 39, 1702–1708 (2000).

    CAS  PubMed  Google Scholar 

  12. Van Goethem, G., Dermaut, B., Lofgren, A., Martin, J. J. & Van Broeckhoven, C. Mutation of POLG is associated with progressive external ophthalmoplegia characterized by mtDNA deletions. Nat. Genet. 28, 211–212 (2001).

    PubMed  Google Scholar 

  13. Van Goethem, G. et al. POLG mutations in neurodegenerative disorders with ataxia but no muscle involvement. Neurology 63, 1251–1257 (2004).

    PubMed  Google Scholar 

  14. Van Goethem, G. et al. Recessive POLG mutations presenting with sensory and ataxic neuropathy in compound heterozygote patients with progressive external ophthalmoplegia. Neuromuscul. Disord. 13, 133–142 (2003).

    PubMed  Google Scholar 

  15. Hakonen, A. H. et al. Mitochondrial DNA polymerase W748S mutation: a common cause of autosomal recessive ataxia with ancient European origin. Am. J. Hum. Genet. 77, 430–441 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Naviaux, R. K. & Nguyen, K. V. POLG mutations associated with Alpers’ syndrome and mitochondrial DNA depletion. Ann. Neurol. 55, 706–712 (2004).

    CAS  PubMed  Google Scholar 

  17. Naviaux, R. K. & Nguyen, K. V. POLG mutations associated with Alpers syndrome and mitochondrial DNA depletion. Ann. Neurol. 58, 491 (2005).

    PubMed  Google Scholar 

  18. Winterthun, S. et al. Autosomal recessive mitochondrial ataxic syndrome due to mitochondrial polymerase gamma mutations. Neurology 64, 1204–1208 (2005).

    CAS  PubMed  Google Scholar 

  19. Woodbridge, P., Liang, C., Davis, R. L., Vandebona, H. & Sue, C. M. POLG mutations in Australian patients with mitochondrial disease. Intern. Med. J. 43, 150–156 (2013).

    CAS  PubMed  Google Scholar 

  20. Rahman, S. Mitochondrial disease and epilepsy. Dev. Med. Child Neurol. 54, 397–406 (2012).

    PubMed  Google Scholar 

  21. Bugiardini, E. et al. Clinicopathologic and molecular spectrum of RNASEH1-related mitochondrial disease. Neurol. Genet. 3, e149 (2017).

    PubMed  PubMed Central  Google Scholar 

  22. Schicks, J., Synofzik, M., Schulte, C. & Schols, L. POLG, but not PEO1, is a frequent cause of cerebellar ataxia in Central Europe. Mov. Disord. 25, 2678–2682 (2010).

    PubMed  Google Scholar 

  23. Gorman, G. S. et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann. Neurol. 77, 753–759 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Saneto, R. P. & Naviaux, R. K. Polymerase gamma disease through the ages. Dev. Disabil. Res. Rev. 16, 163–174 (2010).

    PubMed  Google Scholar 

  25. Wong, L. J. et al. Molecular and clinical genetics of mitochondrial diseases due to POLG mutations. Hum. Mutat. 29, E150–E172 (2008).

    PubMed  PubMed Central  Google Scholar 

  26. Hikmat, O. et al. The clinical spectrum and natural history of early-onset diseases due to DNA polymerase gamma mutations. Genet. Med. 19, 1217–1225 (2017).

    CAS  PubMed  Google Scholar 

  27. Harding, B. N. Progressive neuronal degeneration of childhood with liver disease (Alpers–Huttenlocher syndrome): a personal review. J. Child Neurol. 5, 273–287 (1990).

    CAS  PubMed  Google Scholar 

  28. Wolf, N. I. et al. Status epilepticus in children with Alpers’ disease caused by POLG1 mutations: EEG and MRI features. Epilepsia 50, 1596–1607 (2009).

    PubMed  Google Scholar 

  29. Uusimaa, J. et al. Homozygous W748S mutation in the POLG1 gene in patients with juvenile-onset Alpers syndrome and status epilepticus. Epilepsia 49, 1038–1045 (2008).

    CAS  PubMed  Google Scholar 

  30. Visser, N. A. et al. Juvenile-onset Alpers syndrome: interpreting MRI findings. Neurology 74, 1231–1233 (2010).

    CAS  PubMed  Google Scholar 

  31. Wiltshire, E. et al. Juvenile Alpers disease. Arch. Neurol. 65, 121–124 (2008).

    PubMed  Google Scholar 

  32. Isohanni, P. et al. POLG1 manifestations in childhood. Neurology 76, 811–815 (2011).

    CAS  PubMed  Google Scholar 

  33. Harris, M. O., Walsh, L. E., Hattab, E. M. & Golomb, M. R. Is it ADEM, POLG, or both? Arch. Neurol. 67, 493–496 (2010).

    PubMed  Google Scholar 

  34. Naviaux, R. K. et al. Mitochondrial DNA polymerase gamma deficiency and mtDNA depletion in a child with Alpers’ syndrome. Ann. Neurol. 45, 54–58 (1999).

    CAS  PubMed  Google Scholar 

  35. Whittaker, R. G. et al. Epilepsy in adults with mitochondrial disease: a cohort study. Ann. Neurol. 78, 949–957 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Anagnostou, M. E., Ng, Y. S., Taylor, R. W. & McFarland, R. Epilepsy due to mutations in the mitochondrial polymerase gamma (POLG) gene: a clinical and molecular genetic review. Epilepsia 57, 1531–1545 (2016).

    PubMed  Google Scholar 

  37. Van Goethem, G. et al. Patient homozygous for a recessive POLG mutation presents with features of MERRF. Neurology 61, 1811–1813 (2003).

    PubMed  Google Scholar 

  38. Deschauer, M. et al. MELAS associated with mutations in the POLG1 gene. Neurology 68, 1741–1742 (2007).

    CAS  PubMed  Google Scholar 

  39. Orsucci, D. et al. Revisiting mitochondrial ocular myopathies: a study from the Italian network. J. Neurol. 264, 1777–1784 (2017).

    CAS  PubMed  Google Scholar 

  40. Luoma, P. et al. Parkinsonism, premature menopause, and mitochondrial DNA polymerase gamma mutations: clinical and molecular genetic study. Lancet 364, 875–882 (2004).

    CAS  PubMed  Google Scholar 

  41. Pagnamenta, A. T. et al. Dominant inheritance of premature ovarian failure associated with mutant mitochondrial DNA polymerase gamma. Hum. Reprod. 21, 2467–2473 (2006).

    CAS  PubMed  Google Scholar 

  42. Hanisch, F. et al. SANDO syndrome in a cohort of 107 patients with CPEO and mitochondrial DNA deletions. J. Neurol. Neurosurg. Psychiatry 86, 630–634 (2015).

    PubMed  Google Scholar 

  43. Mancuso, M. et al. “Mitochondrial neuropathies”: a survey from the large cohort of the Italian network. Neuromuscul. Disord. 26, 272–276 (2016).

    PubMed  Google Scholar 

  44. Menezes, M. P. et al. Neurophysiological profile of peripheral neuropathy associated with childhood mitochondrial disease. Mitochondrion 30, 162–167 (2016).

    CAS  PubMed  Google Scholar 

  45. Hikmat, O. et al. The presence of anaemia negatively influences survival in patients with POLG disease. J. Inherit. Metab. Dis. 40, 861–866 (2017).

    PubMed  Google Scholar 

  46. Prasun, P. & Koeberl, D. D. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE)-like phenotype in a patient with a novel heterozygous POLG mutation. J. Neurol. 261, 1818–1819 (2014).

    PubMed  Google Scholar 

  47. Tang, S., Dimberg, E. L., Milone, M. & Wong, L. J. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE)-like phenotype: an expanded clinical spectrum of POLG1 mutations. J. Neurol. 259, 862–868 (2012).

    PubMed  Google Scholar 

  48. Van Goethem, G. et al. Novel POLG mutations in progressive external ophthalmoplegia mimicking mitochondrial neurogastrointestinal encephalomyopathy. Eur. J. Hum. Genet. 11, 547–549 (2003).

    PubMed  Google Scholar 

  49. Martikainen, M. H., Paivarinta, M., Jaaskelainen, S. & Majamaa, K. Successful treatment of POLG-related mitochondrial epilepsy with antiepileptic drugs and low glycaemic index diet. Epileptic Disord. 14, 438–441 (2012).

    PubMed  Google Scholar 

  50. Martikainen, M. H. et al. Clinical, genetic, and radiological features of extrapyramidal movement disorders in mitochondrial disease. JAMA Neurol. 73, 668–674 (2016).

    PubMed  Google Scholar 

  51. Davidzon, G. et al. Early-onset familial parkinsonism due to POLG mutations. Ann. Neurol. 59, 859–862 (2006).

    CAS  PubMed  Google Scholar 

  52. Johansen, K. K., Bindoff, L. A., Rydland, J. & Aasly, J. O. Palatal tremor and facial dyskinesia in a patient with POLG1 mutation. Mov. Disord. 23, 1624–1626 (2008).

    PubMed  Google Scholar 

  53. Nicastro, N., Ranza, E., Antonarakis, S. E. & Horvath, J. Pure progressive ataxia and palatal tremor (PAPT) associated with a new polymerase gamma (POLG) mutation. Cerebellum 15, 829–831 (2016).

    CAS  PubMed  Google Scholar 

  54. Synofzik, M. et al. Complex hyperkinetic movement disorders associated with POLG mutations. Mov. Disord. 25, 2472–2475 (2010).

    PubMed  Google Scholar 

  55. Hinnell, C. et al. Dystonia in mitochondrial spinocerebellar ataxia and epilepsy syndrome associated with novel recessive POLG mutations. Mov. Disord. 27, 162–163 (2012).

    CAS  PubMed  Google Scholar 

  56. Pitceathly, R. D. et al. Distal myopathy with cachexia: an unrecognised phenotype caused by dominantly-inherited mitochondrial polymerase gamma mutations. J. Neurol. Neurosurg. Psychiatry 84, 107–110 (2013).

    PubMed  Google Scholar 

  57. Duncan, A. J., Knight, J. A., Costello, H., Conway, G. S. & Rahman, S. POLG mutations and age at menopause. Hum. Reprod. 27, 2243–2244 (2012).

    CAS  PubMed  Google Scholar 

  58. Giordano, C. et al. Fatal congenital myopathy and gastrointestinal pseudo-obstruction due to POLG1 mutations. Neurology 72, 1103–1105 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Lewis, W., Day, B. J. & Copeland, W. C. Mitochondrial toxicity of NRTI antiviral drugs: an integrated cellular perspective. Nat. Rev. Drug Discov. 2, 812–822 (2003).

    CAS  PubMed  Google Scholar 

  60. Young, M. J. Off-target effects of drugs that disrupt human mitochondrial dna maintenance. Front. Mol. Biosci. 4, 74 (2017).

    PubMed  PubMed Central  Google Scholar 

  61. Dalakas, M. C. et al. Mitochondrial myopathy caused by long-term zidovudine therapy. N. Engl. J. Med. 322, 1098–1105 (1990).

    CAS  PubMed  Google Scholar 

  62. Arnaudo, E. et al. Depletion of muscle mitochondrial DNA in AIDS patients with zidovudine-induced myopathy. Lancet 337, 508–510 (1991).

    CAS  Google Scholar 

  63. Dagan, T., Sable, C., Bray, J. & Gerschenson, M. Mitochondrial dysfunction and antiretroviral nucleoside analog toxicities: what is the evidence? Mitochondrion 1, 397–412 (2002).

    CAS  PubMed  Google Scholar 

  64. Lewis, W., Copeland, W. C. & Day, B. Mitochondrial DNA depletion, oxidative stress, and mutation: mechanisms of nucleoside reverse transcriptase inhibitor toxicity. Lab. Invest. 81, 777–790 (2001).

    CAS  PubMed  Google Scholar 

  65. Tzoulis, C. et al. The spectrum of clinical disease caused by the A467T and W748S POLG mutations: a study of 26 cases. Brain 129, 1685–1692 (2006).

    PubMed  Google Scholar 

  66. Nadanaciva, S. & Will, Y. New insights in drug-induced mitochondrial toxicity. Curr. Pharm. Des. 17, 2100–2112 (2011).

    CAS  PubMed  Google Scholar 

  67. Neeve, V. C. et al. What is influencing the phenotype of the common homozygous polymerase-gamma mutation p.Ala467Thr? Brain 135, 3614–3626 (2012).

    PubMed  PubMed Central  Google Scholar 

  68. Rajakulendran, S. et al. A clinical, neuropathological and genetic study of homozygous A467T POLG-related mitochondrial disease. PLOS ONE 11, e0145500 (2016).

    PubMed  PubMed Central  Google Scholar 

  69. Lee, Y. S., Kennedy, W. D. & Yin, Y. W. Structural insight into processive human mitochondrial DNA synthesis and disease-related polymerase mutations. Cell 139, 312–324 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Szymanski, M. R. et al. Structural basis for processivity and antiviral drug toxicity in human mitochondrial DNA replicase. EMBO J. 34, 1959–1970 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Euro, L., Farnum, G. A., Palin, E., Suomalainen, A. & Kaguni, L. S. Clustering of Alpers disease mutations and catalytic defects in biochemical variants reveal new features of molecular mechanism of the human mitochondrial replicase, Pol gamma. Nucleic Acids Res. 39, 9072–9084 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Nurminen, A., Farnum, G. A. & Kaguni, L. S. Pathogenicity in POLG syndromes: DNA polymerase gamma pathogenicity prediction server and database. BBA Clin. 7, 147–156 (2017).

    PubMed  PubMed Central  Google Scholar 

  73. Scuderi, C. et al. The in cis T251I and P587L POLG1 base changes: description of a new family and literature review. Neuromuscul. Disord. 25, 333–339 (2015).

    PubMed  Google Scholar 

  74. Meyer, J. N. et al. Mitochondria as a target of environmental toxicants. Toxicol. Sci. 134, 1–17 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Cohen, B. H., Chinnery, P. F. & Copeland, W. C. POLG-related disorders. GeneReviews https://www.ncbi.nlm.nih.gov/books/NBK26471 (updated 1 Mar 2018).

  76. Gattermann, N., Berneburg, M., Heinisch, J., Aul, C. & Schneider, W. Detection of the ageing-associated 5-Kb common deletion of mitochondrial DNA in blood and bone marrow of hematologically normal adults. Absence of the deletion in clonal bone marrow disorders. Leukemia 9, 1704–1710 (1995).

    CAS  PubMed  Google Scholar 

  77. Michikawa, Y., Mazzucchelli, F., Bresolin, N., Scarlato, G. & Attardi, G. Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 286, 774–779 (1999).

    CAS  PubMed  Google Scholar 

  78. Longley, M. J., Nguyen, D., Kunkel, T. A. & Copeland, W. C. The fidelity of human DNA polymerase gamma with and without exonucleolytic proofreading and the p55 accessory subunit. J. Biol. Chem. 276, 38555–38562 (2001).

    CAS  PubMed  Google Scholar 

  79. Longley, M. J., Ropp, P. A., Lim, S. E. & Copeland, W. C. Characterization of the native and recombinant catalytic subunit of human DNA polymerase gamma: identification of residues critical for exonuclease activity and dideoxynucleotide sensitivity. Biochemistry 37, 10529–10539 (1998).

    CAS  PubMed  Google Scholar 

  80. Zheng, W., Khrapko, K., Coller, H. A., Thilly, W. G. & Copeland, W. C. Origins of human mitochondrial point mutations as DNA polymerase gamma-mediated errors. Mutat. Res. 599, 11–20 (2006).

    CAS  PubMed  Google Scholar 

  81. Kennedy, S. R., Salk, J. J., Schmitt, M. W. & Loeb, L. A. Ultra-sensitive sequencing reveals an age-related increase in somatic mitochondrial mutations that are inconsistent with oxidative damage. PLOS Genet. 9, e1003794 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Cortopassi, G. A., Shibata, D., Soong, N. W. & Arnheim, N. A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. Proc. Natl Acad. Sci. USA 89, 7370–7374 (1992).

    CAS  PubMed  Google Scholar 

  83. Cortopassi, G. A. & Arnheim, N. Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucleic Acids Res. 18, 6927–6933 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Larsson, N. G. & Clayton, D. A. Molecular genetic aspects of human mitochondrial disorders. Annu. Rev. Genet. 29, 151–178 (1995).

    CAS  PubMed  Google Scholar 

  85. Trifunovic, A. et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417–423 (2004).

    CAS  PubMed  Google Scholar 

  86. Kujoth, G. C. et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309, 481–484 (2005).

    CAS  PubMed  Google Scholar 

  87. Vermulst, M. et al. Mitochondrial point mutations do not limit the natural lifespan of mice. Nat. Genet. 39, 540–543 (2007).

    CAS  PubMed  Google Scholar 

  88. Vermulst, M. et al. DNA deletions and clonal mutations drive premature aging in mitochondrial mutator mice. Nat. Genet. 40, 392–394 (2008).

    CAS  PubMed  Google Scholar 

  89. Engelsen, B. A. et al. POLG1 mutations cause a syndromic epilepsy with occipital lobe predilection. Brain 131, 818–828 (2008).

    PubMed  Google Scholar 

  90. Tzoulis, C., Schwarzlmuller, T., Biermann, M., Haugarvoll, K. & Bindoff, L. A. Mitochondrial DNA homeostasis is essential for nigrostriatal integrity. Mitochondrion 28, 33–37 (2016).

    CAS  PubMed  Google Scholar 

  91. Tzoulis, C. et al. Severe nigrostriatal degeneration without clinical parkinsonism in patients with polymerase gamma mutations. Brain 136, 2393–2404 (2013).

    PubMed  Google Scholar 

  92. Suomalainen, A. et al. FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study. Lancet Neurol. 10, 806–818 (2011).

    CAS  PubMed  Google Scholar 

  93. Yatsuga, S. et al. Growth differentiation factor 15 as a useful biomarker for mitochondrial disorders. Ann. Neurol. 78, 814–823 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Hasselmann, O. et al. Cerebral folate deficiency and CNS inflammatory markers in Alpers disease. Mol. Genet. Metab. 99, 58–61 (2010).

    CAS  PubMed  Google Scholar 

  95. Echaniz-Laguna, A. et al. POLG1 variations presenting as multiple sclerosis. Arch. Neurol. 67, 1140–1143 (2010).

    PubMed  Google Scholar 

  96. McKiernan, P. et al. Incidence of primary mitochondrial disease in children younger than 2 years presenting with acute liver failure. J. Pediatr. Gastroenterol. Nutr. 63, 592–597 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Palin, E. J., Hakonen, A. H., Korpela, M., Paetau, A. & Suomalainen, A. Mitochondrial recessive ataxia syndrome mimicking dominant spinocerebellar ataxia. J. Neurol. Sci. 315, 160–163 (2012).

    CAS  PubMed  Google Scholar 

  98. Kirschenbaum, D., Hedberg-Oldfors, C., Oldfors, A., Scherer, E. & Budka, H. Distinctive cerebral neuropathology in an adult case of sensory ataxic neuropathy with dysarthria and ophthalmoplegia (SANDO) syndrome. Neuropathol. Appl. Neurobiol. 44, 639–642 (2018).

    CAS  PubMed  Google Scholar 

  99. Hakonen, A. H. et al. Abundance of the POLG disease mutations in Europe, Australia, New Zealand, and the United States explained by single ancient European founders. Eur. J. Hum. Genet. 15, 779–783 (2007).

    CAS  PubMed  Google Scholar 

  100. Kremer, L. S. et al. Genetic diagnosis of Mendelian disorders via RNA sequencing. Nat. Commun. 8, 15824 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Nikkanen, J. et al. A complex genomic locus drives mtDNA replicase POLG expression to its disease-related nervous system regions. EMBO Mol. Med. 10, 13–21 (2018).

    CAS  PubMed  Google Scholar 

  102. Uusimaa, J. et al. Prospective study of POLG mutations presenting in children with intractable epilepsy: prevalence and clinical features. Epilepsia 54, 1002–1011 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Ferrari, G. et al. Infantile hepatocerebral syndromes associated with mutations in the mitochondrial DNA polymerase-gammaA. Brain 128, 723–731 (2005).

    PubMed  Google Scholar 

  104. de Vries, M. C. et al. Multiple oxidative phosphorylation deficiencies in severe childhood multi-system disorders due to polymerase gamma (POLG1) mutations. Eur. J. Pediatr. 166, 229–234 (2007).

    PubMed  Google Scholar 

  105. Horvath, R. et al. Phenotypic spectrum associated with mutations of the mitochondrial polymerase gamma gene. Brain 129, 1674–1684 (2006).

    PubMed  Google Scholar 

  106. Nguyen, K. V., Sharief, F. S., Chan, S. S., Copeland, W. C. & Naviaux, R. K. Molecular diagnosis of Alpers syndrome. J. Hepatol. 45, 108–116 (2006).

    CAS  PubMed  Google Scholar 

  107. Luoma, P. T. et al. Functional defects due to spacer-region mutations of human mitochondrial DNA polymerase in a family with an ataxia-myopathy syndrome. Hum. Mol. Genet. 14, 1907–1920 (2005).

    CAS  PubMed  Google Scholar 

  108. Chan, S. S., Longley, M. J. & Copeland, W. C. The common A467T mutation in the human mitochondrial DNA polymerase (POLG) compromises catalytic efficiency and interaction with the accessory subunit. J. Biol. Chem. 280, 31341–31346 (2005).

    CAS  PubMed  Google Scholar 

  109. Chan, S. S. L., Longley, M. J. & Copeland, W. C. Modulation of the W748S mutation in DNA polymerase gamma by the E1143G polymorphismin mitochondrial disorders. Hum. Mol. Genet. 15, 3473–3483 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Kasiviswanathan, R., Longley, M. J., Chan, S. S. & Copeland, W. C. Disease mutations in the human mitochondrial DNA polymerase thumb subdomain impart severe defects in mitochondrial DNA replication. J. Biol. Chem. 284, 19501–19510 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. DeBalsi, K. L., Longley, M. J., Hoff, K. E. & Copeland, W. C. Synergistic effects of the in cis T251I and P587L mitochondrial dna polymerase gamma disease mutations. J. Biol. Chem. 292, 4198–4209 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Graziewicz, M. A., Longley, M. J., Bienstock, R. J., Zeviani, M. & Copeland, W. C. Structure–function defects of human mitochondrial DNA polymerase in autosomal dominant progressive external ophthalmoplegia. Nat. Struct. Mol. Biol. 11, 770–776 (2004).

    CAS  PubMed  Google Scholar 

  113. Ponamarev, M. V., Longley, M. J., Nguyen, D., Kunkel, T. A. & Copeland, W. C. Active site mutation in DNA polymerase gamma associated with progressive external ophthalmoplegia causes error-prone DNA synthesis. J. Biol. Chem. 277, 15225–15228 (2002).

    CAS  PubMed  Google Scholar 

  114. Viscomi, C. & Zeviani, M. MtDNA-maintenance defects: syndromes and genes. J. Inherit. Metab. Dis. 40, 587–599 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. van Baalen, A., Vezzani, A., Hausler, M. & Kluger, G. Febrile infection-related epilepsy syndrome: clinical review and hypotheses of epileptogenesis. Neuropediatrics 48, 5–18 (2017).

    PubMed  Google Scholar 

  116. Rahman, S. Gastrointestinal and hepatic manifestations of mitochondrial disorders. J. Inherit. Metab. Dis. 36, 659–673 (2013).

    CAS  PubMed  Google Scholar 

  117. Staufner, C. et al. Recurrent acute liver failure due to NBAS deficiency: phenotypic spectrum, disease mechanisms, and therapeutic concepts. J. Inherit. Metab. Dis. 39, 3–16 (2016).

    CAS  PubMed  Google Scholar 

  118. Bindoff, L. A. & Engelsen, B. A. Mitochondrial diseases and epilepsy. Epilepsia 53 (Suppl. 4), 92–97 (2012).

    CAS  PubMed  Google Scholar 

  119. McFarland, R. et al. Reversible valproate hepatotoxicity due to mutations in mitochondrial DNA polymerase gamma (POLG1). Arch. Dis. Child. 93, 151–153 (2008).

    CAS  PubMed  Google Scholar 

  120. Saneto, R. P. et al. POLG DNA testing as an emerging standard of care before instituting valproic acid therapy for pediatric seizure disorders. Seizure 19, 140–146 (2010).

    PubMed  PubMed Central  Google Scholar 

  121. Pruss, H. & Holtkamp, M. Ketamine successfully terminates malignant status epilepticus. Epilepsy Res. 82, 219–222 (2008).

    PubMed  Google Scholar 

  122. Visser, N. A. et al. Magnesium treatment for patients with refractory status epilepticus due to POLG1-mutations. J. Neurol. 258, 218–222 (2011).

    CAS  PubMed  Google Scholar 

  123. Dhamija, R., Moseley, B. D. & Wirrell, E. C. Clinical reasoning: a 10-month-old boy with myoclonic status epilepticus. Neurology 76, e22–e25 (2011).

    PubMed  Google Scholar 

  124. Lupashko, S., Malik, S., Donahue, D., Hernandez, A. & Perry, M. S. Palliative functional hemispherectomy for treatment of refractory status epilepticus associated with Alpers’ disease. Childs Nerv. Syst. 27, 1321–1323 (2011).

    PubMed  Google Scholar 

  125. Pfeffer, G., Majamaa, K., Turnbull, D. M., Thorburn, D. & Chinnery, P. F. Treatment for mitochondrial disorders. Cochrane Database Syst. Rev. 4, CD004426 (2012).

    Google Scholar 

  126. Bell, E. A. et al. Treatment of valproic acid-associated hepatic failure with orthotopic liver transplantation. Ann. Pharmacother. 26, 18–21 (1992).

    CAS  PubMed  Google Scholar 

  127. Hynynen, J. et al. Acute liver failure after valproate exposure in patients with POLG1 mutations and the prognosis after liver transplantation. Liver Transpl. 20, 1402–1412 (2014).

    PubMed  Google Scholar 

  128. Thomson, M. A., Lynch, S., Strong, R., Shepherd, R. W. & Marsh, W. Orthotopic liver transplantation with poor neurologic outcome in valproate-associated liver failure: a need for critical risk-benefit appraisal in the use of valproate. Transplant. Proc. 32, 200–203 (2000).

    CAS  PubMed  Google Scholar 

  129. McKiernan, P. Acute liver failure after valproate exposure: liver transplantation may be indicated beyond childhood. Liver Transpl. 20, 1287–1289 (2014).

    PubMed  Google Scholar 

  130. Mindikoglu, A. L. et al. Valproic acid-associated acute liver failure in children: case report and analysis of liver transplantation outcomes in the United States. J. Pediatr. 158, 802–807 (2011).

    PubMed  Google Scholar 

  131. Santra, S., Gilkerson, R. W., Davidson, M. & Schon, E. A. Ketogenic treatment reduces deleted mitochondrial DNAs in cultured human cells. Ann. Neurol. 56, 662–669 (2004).

    CAS  PubMed  Google Scholar 

  132. Ahola-Erkkila, S. et al. Ketogenic diet slows down mitochondrial myopathy progression in mice. Hum. Mol. Genet. 19, 1974–1984 (2010).

    CAS  PubMed  Google Scholar 

  133. Spiegler, J., Stefanova, I., Hellenbroich, Y. & Sperner, J. Bowel obstruction in patients with Alpers–Huttenlocher syndrome. Neuropediatrics 42, 194–196 (2011).

    CAS  PubMed  Google Scholar 

  134. Khan, A. et al. Alpers syndrome: the natural history of a case highlighting neuroimaging, neuropathology, and fat metabolism. J. Child Neurol. 27, 636–640 (2012).

    PubMed  Google Scholar 

  135. Hughes, S. D. et al. The ketogenic diet component decanoic acid increases mitochondrial citrate synthase and complex I activity in neuronal cells. J. Neurochem. 129, 426–433 (2014).

    CAS  PubMed  Google Scholar 

  136. Chang, P. et al. Seizure control by decanoic acid through direct AMPA receptor inhibition. Brain 139, 431–443 (2016).

    PubMed  Google Scholar 

  137. Kanabus, M. et al. The pleiotropic effects of decanoic acid treatment on mitochondrial function in fibroblasts from patients with complex I deficient Leigh syndrome. J. Inherit. Metab. Dis. 39, 415–426 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Pitayu, L. et al. Combined use of Saccharomyces cerevisiae. Caenorhabditis elegans and patient fibroblasts leads to the identification of clofilium tosylate as a potential therapeutic chemical against POLG-related diseases. Hum. Mol. Genet. 25, 715–727 (2016).

    CAS  PubMed  Google Scholar 

  139. Taanman, J. W., Muddle, J. R. & Muntau, A. C. Mitochondrial DNA depletion can be prevented by dGMP and dAMP supplementation in a resting culture of deoxyguanosine kinase-deficient fibroblasts. Hum. Mol. Genet. 12, 1839–1845 (2003).

    CAS  PubMed  Google Scholar 

  140. Lopez-Gomez, C. et al. Deoxycytidine and deoxythymidine treatment for thymidine kinase 2 deficiency. Ann. Neurol. 81, 641–652 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Bulst, S. et al. In vitro supplementation with dAMP/dGMP leads to partial restoration of mtDNA levels in mitochondrial depletion syndromes. Hum. Mol. Genet. 18, 1590–1599 (2009).

    CAS  PubMed  Google Scholar 

  142. Di Meo, I. et al. Effective AAV-mediated gene therapy in a mouse model of ethylmalonic encephalopathy. EMBO Mol. Med. 4, 1008–1014 (2012).

    PubMed  PubMed Central  Google Scholar 

  143. Torres-Torronteras, J. et al. Hematopoietic gene therapy restores thymidine phosphorylase activity in a cell culture and a murine model of MNGIE. Gene Ther. 18, 795–806 (2011).

    CAS  PubMed  Google Scholar 

  144. Longley, M. J. et al. Mutant POLG2 disrupts DNA polymerase gamma subunits and causes progressive external ophthalmoplegia. Am. J. Hum. Genet. 78, 1026–1034 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Spelbrink, J. N. et al. Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat. Genet. 28, 223–231 (2001).

    CAS  PubMed  Google Scholar 

  146. Reyes, A. et al. RNASEH1 mutations impair mtDNA replication and cause adult-onset mitochondrial encephalomyopathy. Am. J. Hum. Genet. 97, 186–193 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Stiles, A. R. et al. Mutations in TFAM, encoding mitochondrial transcription factor A, cause neonatal liver failure associated with mtDNA depletion. Mol. Genet. Metab. 119, 91–99 (2016).

    CAS  PubMed  Google Scholar 

  148. Nicholls, T. J. et al. Topoisomerase 3alpha is required for decatenation and segregation of human mtDNA. Mol. Cell 69, 9–23 (2018).

    CAS  PubMed  Google Scholar 

  149. Ronchi, D. et al. Mutations in DNA2 link progressive myopathy to mitochondrial DNA instability. Am. J. Hum. Genet. 92, 293–300 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Kornblum, C. et al. Loss-of-function mutations in MGME1 impair mtDNA replication and cause multisystemic mitochondrial disease. Nat. Genet. 45, 214–219 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Kaukonen, J. et al. Role of adenine nucleotide translocator 1 in mtDNA maintenance. Science 289, 782–785 (2000).

    CAS  PubMed  Google Scholar 

  152. Nishino, I., Spinazzola, A. & Hirano, M. Thymidine phosphorylase gene mutations in MNGIE, a human mitochondrial disorder. Science 283, 689–692 (1999).

    CAS  PubMed  Google Scholar 

  153. Saada, A. et al. Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy. Nat. Genet. 29, 342–344 (2001).

    CAS  PubMed  Google Scholar 

  154. Mandel, H. et al. The deoxyguanosine kinase gene is mutated in individuals with depleted hepatocerebral mitochondrial DNA. Nat. Genet. 29, 337–341 (2001).

    CAS  PubMed  Google Scholar 

  155. Bourdon, A. et al. Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion. Nat. Genet. 39, 776–780 (2007).

    CAS  PubMed  Google Scholar 

  156. Elpeleg, O. et al. Deficiency of the ADP-forming succinyl-CoA synthase activity is associated with encephalomyopathy and mitochondrial DNA depletion. Am. J. Hum. Genet. 76, 1081–1086 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Ostergaard, E. et al. Deficiency of the alpha subunit of succinate-coenzyme A ligase causes fatal infantile lactic acidosis with mitochondrial DNA depletion. Am. J. Hum. Genet. 81, 383–387 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Spinazzola, A. et al. MPV17 encodes an inner mitochondrial membrane protein and is mutated in infantile hepatic mitochondrial DNA depletion. Nat. Genet. 38, 570–575 (2006).

    CAS  PubMed  Google Scholar 

  159. Besse, A. et al. The GABA transaminase, ABAT, is essential for mitochondrial nucleoside metabolism. Cell Metab. 21, 417–427 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Stewart, J. D. et al. OPA1 in multiple mitochondrial DNA deletion disorders. Neurology 71, 1829–1831 (2008).

    CAS  PubMed  Google Scholar 

  161. Rouzier, C. et al. The MFN2 gene is responsible for mitochondrial DNA instability and optic atrophy ‘plus’ phenotype. Brain 135, 23–34 (2012).

    PubMed  Google Scholar 

  162. Bonnen, P. E. et al. Mutations in FBXL4 cause mitochondrial encephalopathy and a disorder of mitochondrial DNA maintenance. Am. J. Hum. Genet. 93, 471–481 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Di Bella, D. et al. Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28. Nat. Genet. 42, 313–321 (2010).

    PubMed  Google Scholar 

  164. Elleuch, N. et al. Mutation analysis of the paraplegin gene (SPG7) in patients with hereditary spastic paraplegia. Neurology 66, 654–659 (2006).

    CAS  PubMed  Google Scholar 

  165. Di Fonzo, A. et al. The mitochondrial disulfide relay system protein GFER is mutated in autosomal-recessive myopathy with cataract and combined respiratory-chain deficiency. Am. J. Hum. Genet. 84, 594–604 (2009).

    PubMed  PubMed Central  Google Scholar 

  166. Ahmed, N., Ronchi, D. & Comi, G. P. Genes and pathways involved in adult onset disorders featuring muscle mitochondrial DNA instability. Int. J. Mol. Sci. 16, 18054–18076 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Craig, K. et al. The A467T and W748S POLG substitutions are a rare cause of adult-onset ataxia in Europe. Brain 130, E69 (2007).

    PubMed  Google Scholar 

  168. Bicknese, A. R., May, W., Hickey, W. F. & Dodson, W. E. Early childhood hepatocerebral degeneration misdiagnosed as valproate hepatotoxicity. Ann. Neurol. 32, 767–775 (1992).

    CAS  PubMed  Google Scholar 

  169. Delarue, A. et al. Inappropriate liver transplantation in a child with Alpers–Huttenlocher syndrome misdiagnosed as valproate-induced acute liver failure. Pediatr. Transplant. 4, 67–71 (2000).

    CAS  PubMed  Google Scholar 

  170. Kayihan, N., Nennesmo, I., Ericzon, B. G. & Nemeth, A. Fatal deterioration of neurological disease after orthotopic liver transplantation for valproic acid-induced liver damage. Pediatr. Transplant. 4, 211–214 (2000).

    CAS  PubMed  Google Scholar 

  171. Parikh, S. et al. Solid organ transplantation in primary mitochondrial disease: proceed with caution. Mol. Genet. Metab. 118, 178–184 (2016).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences (grants ES 065078 and ES 065080) to W.C.C., and from the Great Ormond Street Hospital Children’s Charity Research Leadership Award (V1260), the Lily Foundation, and the National Institute for Health Research Biomedical Research Centre at Great Ormond Street Hospital for Children NHS Foundation Trust and University College London, UK, to S.R.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to all aspects of manuscript preparation.

Corresponding author

Correspondence to William C. Copeland.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Human DNA Polymerase Gamma Mutation Database: https://tools.niehs.nih.gov/polg

dbSNP rs113994098: https://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs=113994098

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, S., Copeland, W.C. POLG-related disorders and their neurological manifestations. Nat Rev Neurol 15, 40–52 (2019). https://doi.org/10.1038/s41582-018-0101-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-018-0101-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing