Skip to main content

Main menu

  • Home
  • Content
    • Latest
    • Ahead of print
    • Archive
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Alerts
    • Feedback
    • Folders
    • Help
  • Other Publications
    • Saudi Medical Journal

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Neurosciences Journal
  • Other Publications
    • Saudi Medical Journal
  • My alerts
  • Log in
Neurosciences Journal

Advanced Search

  • Home
  • Content
    • Latest
    • Ahead of print
    • Archive
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Alerts
    • Feedback
    • Folders
    • Help
  • Follow psmmc on Twitter
  • Visit psmmc on Facebook
  • RSS
ReviewReview
Open Access

Review of electroencephalography signals approaches for mental stress assessment

Eyad T. Attar
Neurosciences Journal October 2022, 27 (4) 209-215; DOI: https://doi.org/10.17712/nsj.2022.4.20220025
Eyad T. Attar
From the Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah, kingdom of Saudi Arabia
Engr, MD, PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • eLetters
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Slavich GM.
    Life Stress and Health: A Review of Conceptual Issues and Recent Findings, Teach Psychol 2016; 43: 346–355.
    OpenUrlCrossRef
  2. 2.↵
    1. Schneiderman N,
    2. Ironson G,
    3. Siegel SD.
    Stress and Health: Psychological, Behavioral, and Biological Determinants. Annu Rev Clin Psychol 2005; 1: 607–628.
    OpenUrlCrossRefPubMed
  3. 3.↵
    1. Won E,
    2. Kim Yong-Ku
    . Stress, the Autonomic Nervous System, and the Immune-kynurenine Pathway in the Etiology of Depression. Curr Neuropharmacol 2016; 14:665–73.
    OpenUrl
  4. 4.↵
    1. Hammen C,
    2. Kim EY,
    3. Eberhart NK,
    4. Brennan PA.
    Chronic and acute stress and the prediction of major depression in women. Depress Anxiety 2009; 26: 718–723.
    OpenUrlCrossRefPubMed
  5. 5.↵
    1. Yaribeygi H,
    2. Panahi Y,
    3. Sahraei H,
    4. Johnston TP,
    5. Sahebkar A.
    The impact of stress on body function: A review. EXCLI J 2017; 16: 1057–1072.
    OpenUrl
  6. 6.↵
    1. Godoy LD,
    2. Rossignoli MT,
    3. Delfino-Pereira P,
    4. Garcia-Cairasco N,
    5. de L.
    6. Umeoka EH
    . A comprehensive overview on stress neurobiology: Basic concepts and clinical implications. Front Behav Neurosci 2018; 12: 127.
    OpenUrlCrossRefPubMed
  7. 7.↵
    1. Ranabir S,
    2. Reetu K.
    Stress and hormones. Indian J Endocrinol Metab 2011; 15: 18–22.
    OpenUrlCrossRefPubMed
  8. 8.↵
    1. Lee DY,
    2. Kim E,
    3. Choi MH.
    Technical and clinical aspects of cortisol as a biochemical marker of chronic stress. BMB Rep 2015; 48: 209–216.
    OpenUrl
  9. 9.↵
    1. Tsigos C,
    2. Kyrou I,
    3. Kassi E,
    4. Chrousos GP. Stress
    , Endocrine Physiology and Pathophysiology. Endotext, 2000. In: Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000.
  10. 10.↵
    1. Giannakakis G,
    2. Grigoriadis D,
    3. Giannakaki K,
    4. Simantiraki O,
    5. Roniotis A,
    6. Tsiknakis M.
    Review on psychological stress detection using biosignals. IEEE Transactions on Affective Computing 2019; 13: 440–460.
    OpenUrl
  11. 11.↵
    1. Michel CM,
    2. Brunet D.
    EEG Source Imaging: A Practical Review of the Analysis Steps. Front Neurol 2019; 10: 325.
    OpenUrlCrossRefPubMed
  12. 12.↵
    1. St. Louis EK
    . Sleep and Epilepsy: Strange Bedfellows No More. Minerva Pneumol 2011; 50: 159–176.
    OpenUrl
  13. 13.↵
    1. Ormerod W.
    2. Richard Caton
    (1842–1926): pioneer electrophysiologist and cardiologist. J Med Biogr 2006; 14: 30–35.
    OpenUrlCrossRefPubMed
  14. 14.↵
    1. Jacks AS,
    2. Miller NR.
    3. Hans Berger
    (1873–1941), Richard Caton (1842–1926), and electroencephalography. J Neurol Neurosurg Psychiatry 2003; 74: 9.
    OpenUrlFREE Full Text
  15. 15.↵
    1. İnce R,
    2. Adanır SS,
    3. Sevmez F.
    The inventor of electroencephalography (EEG): Hans Berger (1873–1941). Childs Nerv Syst 2021; 37: 2723–2724.
    OpenUrl
  16. 16.↵
    1. Teplan SM.
    Fundamentals of Eeg Measurement. Meas Sci Rev 2002; 2: 1–11.
    OpenUrl
  17. 17.↵
    1. Attar ET,
    2. Balasubramanian V,
    3. Subasi E,
    4. Kaya M.
    Stress Analysis Based on Simultaneous Heart Rate Variability and EEG Monitoring. IEEE J Transl Eng Health Med 2021; 9: 2700607.
    OpenUrl
  18. 18.↵
    1. Bronzino JD,
    2. Peterson DR
    , editor. Biomedical Engineering Fundamentals. 2nd Edition. CRC Press; Boca Raton (FL): 2014; 921–932.
  19. 19.↵
    1. Parvizi J,
    2. Kastner S.
    Human Intracranial EEG: Promises and Limitations. Nat Neurosci 2018; 21: 474–483.
    OpenUrlCrossRefPubMed
  20. 20.↵
    1. Baura GD
    Electroencephalographs. In: Baura GD, editor. Medical Device Technologies. Elsevier; 2012. pp. 275–295.
  21. 21.↵
    1. Nayak CS,
    2. Anilkumar AC.
    EEG Normal Waveforms. Treasure Island (FL): StatPearls Publishing; 2022. p. 41–48
  22. 22.↵
    1. Vanhatalo S,
    2. Voipio J,
    3. Kaila K.
    Full-band EEG (FbEEG): A new standard for clinical electroencephalography. Clin EEG Neurosci 2005; 36: 311–317.
    OpenUrlCrossRefPubMed
  23. 23.↵
    1. Singh B,
    2. Wagatsuma H.
    A Removal of Eye Movement and Blink Artifacts from EEG Data Using Morphological Component Analysis. Comput Math Methods Med 2017; 2017: 1–17.
    OpenUrlPubMed
  24. 24.↵
    1. Jiang X,
    2. Bin Bian G,
    3. Tian Z.
    Removal of artifacts from EEG signals: A review,. Sensors (Basel) 2019; 19: 987.
    OpenUrl
  25. 25.↵
    1. Kumar JS,
    2. Bhuvaneswari P.
    Analysis of electroencephalography (EEG) signals and its categorization - A study. Procedia Eng 2012; 38: 2525–2536.
    OpenUrl
  26. 26.↵
    1. Amin HU,
    2. Mumtaz W,
    3. Subhani AR,
    4. Saad MNM,
    5. Malik AS
    , Classification of EEG signals based on pattern recognition approach. Front Comput Neurosci 2017; 11: 103.
    OpenUrlCrossRef
  27. 27.↵
    1. Gao Y,
    2. Gao B,
    3. Chen Q,
    4. Liu J,
    5. Zhang Y.
    Deep convolutional neural network-based epileptic electroencephalogram (EEG) signal classification. Front Neurol 2020; 11: 375.
    OpenUrl
  28. 28.↵
    1. Höller P,
    2. Trinka E,
    3. Höller Y.
    High-Frequency Oscillations in the Scalp Electroencephalogram: Mission Impossible without Computational Intelligence. Computational Intelligence and Neuroscience 2018; 2018: 1638097.
    OpenUrl
  29. 29.↵
    1. Demanuele C,
    2. James CJ,
    3. Sonuga-Barke EJS.
    Distinguishing low frequency oscillations within the 1/f spectral behaviour of electromagnetic brain signals. Behav Brain Funct 2007; 3: 62.
    OpenUrlCrossRefPubMed
  30. 30.↵
    1. Silverman D.
    The Rationale and History of the 10-20 System of the International Federation. Am J EEG Technol 1963; 3: 17–22.
    OpenUrl
  31. 31.↵
    1. Matthes J,
    2. Davis CS,
    3. Potter RF
    1. Read GL,
    2. Innis IJ.
    Electroencephalography (EEG). In: Matthes J, Davis CS, Potter RF, editors. The International Encyclopedia of Communication Research Methods. Wiley-Blackwell; 2017. p. 1–18. from URL: https://doi.org/10.1002/9781118901731.iecrm0080
  32. 32.↵
    1. Sazgar M,
    2. Young MG
    Normal EEG Awake and Sleep. In: Sazgar M, Young MG, editors. Absolute Epilepsy and EEG Rotation Review. Springer International Publishing; Cham (DK): 2019. p. 127–139.
  33. 33.↵
    1. Faigle R,
    2. Sutter R,
    3. Kaplan PW.
    Electroencephalography of Encephalopathy in Patients With Endocrine and Metabolic Disorders. J Clin Neurophysiol 2013; 5: 505–516.
    OpenUrl
  34. 34.↵
    1. Watemberg N,
    2. Linder I,
    3. Dabby R,
    4. Blumkin L,
    5. Lerman-Sagie T.
    Clinical Correlates of Occipital Intermittent Rhythmic Delta Activity (OIRDA) in Children. Epilepsia 2007; 48: 330–334.
    OpenUrlPubMed
  35. 35.↵
    1. Reiher J,
    2. Beaudry M,
    3. Leduc CP.
    Temporal Intermittent Rhythmic Delta Activity (TIRDA) in the Diagnosis of Complex Partial Epilepsy: Sensitivity, Specificity and Predictive Value. Can J Neurol Sci 1989; 16: 398–401.
    OpenUrlPubMedWeb of Science
  36. 36.↵
    1. Britton JW,
    2. Frey LC,
    3. Hopp JLet
    , editors. Electroencephalography (EEG): An Introductory Text and Atlas of Normal and Abnormal Findings in Adults, Children, and Infants [Internet]. Chicago (USA): American Epilepsy Society; 2016.
  37. 37.↵
    1. Koudelková Z,
    2. Strmiska M.
    Introduction to the identification of brain waves based on their frequency. MATEC 2018; 210: 10.1051/matecconf/201821005012.
  38. 38.↵
    1. Hardgrave MD.
    The Effects of cellular theta breathing meditation on cell mediated immune response: A controlled, randomized investigation of altered consciousness and health. Las Vegas: University of Nevada; 2010. From URL: http://dx.doi.org/10.34917/2216365
  39. 39.↵
    1. Perone S,
    2. Palanisamy J,
    3. Carlson SM.
    Age-related change in brain rhythms from early to middle childhood: Links to executive function. Dev Sci 2018; 21: e12691.
    OpenUrlCrossRef
  40. 40.↵
    1. Biederman J,
    2. Feinberg L,
    3. Chan J,
    4. Adeyemo BO,
    5. Woodworth KY,
    6. Panis W, et al.
    Mild Traumatic Brain Injury and Attention-Deficit Hyperactivity Disorder in Young Student Athletes. J Nerv Ment Dis. 2015; 203: 813–819.
    OpenUrlPubMed
  41. 41.↵
    1. Blum AS,
    2. Rutkove SB
    1. Schomer DL.
    The Normal EEG in an Adult. In: Blum AS, Rutkove SB, editors. The Clinical Neurophysiology Primer. Humana Press; 2007. p. 57–71. from URL: https://doi.org/10.1007/978-1-59745-271-7_5
  42. 42.↵
    1. Andraus MEC,
    2. Alves-Leon SV.
    Non-epileptiform EEG abnormalities: an overview. Arq Neuropsiquiatr 2011; 5: 829–835.
    OpenUrl
  43. 43.↵
    1. Aich TK.
    Absent posterior alpha rhythm: An indirect indicator of seizure disorder. Indian J Psychiatry 2014; 56: 61–66.
    OpenUrl
  44. 44.↵
    1. Azabou E,
    2. Navarro V,
    3. Kubis N,
    4. Gavaret M,
    5. Heming N,
    6. Cariou A.
    Value and mechanisms of EEG reactivity in the prognosis of patients with impaired consciousness: A systematic review. Crit Care 2018; 22: 184.
    OpenUrl
  45. 45.↵
    1. Al Sawaf A,
    2. Gudlavalleti A,
    3. Murr N.
    EEG Basal Cortical Rhythms. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022. From URL: https://www.ncbi.nlm.nih.gov/books/NBK532986/
  46. 46.↵
    1. Cervone, RL,
    2. Blum AS.
    Normal Variant EEG Patterns. In: Blum AS, Rutkove SB, editors. The Clinical Neurophysiology Primer. Humana Press; 2007. p. 83–100. From URL: https://doi.org/10.1007/978-1-59745-271-7_7
  47. 47.↵
    1. García-Monge A,
    2. Rodríguez-Navarro H,
    3. González-Calvo G,
    4. Bores-García D.
    Brain activity during different throwing games: Eeg exploratory study. Int J Environ Res Public Health 2020; 17: 6796.
    OpenUrl
  48. 48.↵
    1. Patel AK,
    2. Reddy V,
    3. Araujo JF. Physiology,
    4. Sleep Stages
    . [Updated 2022 Apr 28]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022. From URL: https://www.ncbi.nlm.nih.gov/books/NBK526132/
  49. 49.↵
    1. Becker DE.
    Pharmacodynamic considerations for moderate and deep sedation. Anesth Prog 2012; 59: 28–42.
    OpenUrlPubMed
  50. 50.↵
    1. Caceres JA,
    2. Goldstein JN.
    Intracranial hemorrhage. Emerg Med Clin North Am 2012; 30: 771–794.
    OpenUrlPubMed
  51. 51.↵
    1. Zijlmans M,
    2. Jiruska P,
    3. Zelmann R,
    4. Leijten FS,
    5. Jefferys JG,
    6. Gotman J.
    High-frequency oscillations as a new biomarker in epilepsy. Ann Neurol 2012; 71: 169–178.
    OpenUrlCrossRefPubMed
  52. 52.↵
    1. Jia X,
    2. Kohn A.
    Gamma rhythms in the brain. PLoS Biol 2011; 9: e1001045.
    OpenUrlCrossRefPubMed
  53. 53.↵
    1. Warner S.
    Cheat Sheet for Neurofeedback. Stress Ther Solut. 2013. From URL: http://stresstherapysolutions.com/uploads/STSCheatSheetoftheBrain.pdf
  54. 54.↵
    1. Brown RE,
    2. Basheer R,
    3. McKenna JT,
    4. Strecker RE,
    5. McCarley RW.
    Control of sleep and wakefulness. Physiol Rev 2012; 92: 1087–1187.
    OpenUrlCrossRefPubMed
  55. 55.↵
    1. Başar E,
    2. Düzgün A.
    Links of Consciousness, Perception, and Memory by Means of Delta Oscillations of Brain. Front Psychol 2016; 7: 275.
    OpenUrlCrossRef
  56. 56.↵
    1. Butt M,
    2. Espinal E,
    3. Aupperle RL,
    4. Nikulina V,
    5. Stewart JL.
    The electrical aftermath: Brain signals of posttraumatic stress disorder filtered through a clinical lens. Front Psychiatry 2019; 10: 368.
    OpenUrl
  57. 57.↵
    1. Andrade ALM,
    2. De Micheli D.
    Innovations in the treatment of substance addiction. Springer International Publishing 2016
  58. 58.↵
    1. Sarnthein J,
    2. Jeanmonod D.
    High thalamocortical theta coherence in patients with Parkinson’s disease. J Neurosci 2007; 27: 124–131.
    OpenUrlAbstract/FREE Full Text
  59. 59.↵
    1. Cavanagh JF,
    2. Shackman AJ.
    Frontal midline theta reflects anxiety and cognitive control: Meta-analytic evidence. J Physiol Paris 2015; 109: 3–15.
    OpenUrlCrossRefPubMed
  60. 60.↵
    1. Staudigl T,
    2. Hanslmayr S.
    Theta oscillations at encoding mediate the context-dependent nature of human episodic memory. Current Biology 2013; 12: 1101–1106.
    OpenUrl
  61. 61.↵
    1. Newson JJ,
    2. Thiagarajan TC.
    EEG Frequency Bands in Psychiatric Disorders: A Review of Resting State Studies. Front Hum Neurosci 2019; 12: 521.
    OpenUrl
  62. 62.↵
    1. Roux F,
    2. Wibra M,
    3. Singer W,
    4. Aru J,
    5. Uhlhaas PJ.
    The phase of thalamic alpha activity modulates cortical gamma-band activity: Evidence from resting-state MEG recordings. J Neurosci 2013; 33: 17827–17835.
    OpenUrlAbstract/FREE Full Text
  63. 63.↵
    1. Colrain IM,
    2. Nicholas CL,
    3. Baker FC.
    Alcohol and the sleeping brain. Handb Clin Neurol 2014; 125: 415–431.
    OpenUrl
  64. 64.↵
    1. Li G,
    2. Huang S,
    3. Xu W,
    4. Jiao W,
    5. Jiang Y,
    6. Gao Z, et al.
    The impact of mental fatigue on brain activity: A comparative study both in resting state and task state using EEG. BMC Neurosci 2020; 21: 1–9.
    OpenUrl
  65. 65.↵
    1. Nunez PL,
    2. Srinivasan R,
    3. Fields RD.
    EEG functional connectivity, axon delays and white matter disease. Clin Neurophysiol 2015; 126: 110–120.
    OpenUrlCrossRefPubMed
  66. 66.↵
    1. Groppe DM,
    2. Bickel S,
    3. Keller CJ,
    4. Jain SK,
    5. Hwang ST,
    6. Harden C, et al.
    Dominant frequencies of resting human brain activity as measured by the electrocorticogram. Neuroimage 2013; 79: 223–233.
    OpenUrl
  67. 67.↵
    1. Zhao G,
    2. Zhang Y,
    3. Ge Y,
    4. Zheng Y,
    5. Sun X,
    6. Zhang K.
    Asymmetric hemisphere activation in tenderness: Evidence from EEG signals. Sci Rep 2018; 8: 8029.
    OpenUrl
  68. 68.↵
    1. Fenster RJ,
    2. Lebois LAM,
    3. Ressler KJ,
    4. Suh J.
    Brain circuit dysfunction in posttraumatic stress disorder: from mouse to man. Nat Rev Neurosci 2018; 19: 535–551.
    OpenUrlCrossRefPubMed
  69. 69.↵
    1. McEwen BS,
    2. Nasca C,
    3. Gray JD.
    Stress Effects on Neuronal Structure: Hippocampus, Amygdala, and Prefrontal Cortex. Neuropsychopharmacology 2016; 41: 3–23.
    OpenUrlCrossRefPubMed
  70. 70.↵
    1. Klimesch W.
    Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn Sci 2012; 16: 606–617.
    OpenUrlCrossRefPubMedWeb of Science
  71. 71.↵
    1. Kučikienė D,
    2. Praninskienė R.
    The impact of music on the bioelectrical oscillations of the brain. Acta medica Litu 2018; 25: 101–106.
    OpenUrl
  72. 72.↵
    1. Blum K,
    2. Chen AL,
    3. Braverman ER,
    4. Comings DE,
    5. Chen TJH,
    6. Arcuri V, et al.
    Attention-deficit-hyperactivity disorder and reward deficiency syndrome. Neuropsychiatr Dis Treat 2008; 4: 893–918.
    OpenUrlCrossRefPubMed
  73. 73.↵
    1. Espenhahn S,
    2. de Berker AO,
    3. Van Wijk BCM,
    4. Rossiter HE,
    5. Warda NS.
    Movement-related beta oscillations show high intra-individual reliability. Neuroimage 2017; 147: 175–185.
    OpenUrlCrossRefPubMed
  74. 74.
    1. Roohi-Azizi M,
    2. Azimi L,
    3. Heysieattalab S,
    4. Aamidfar M.
    Changes of the brain’s bioelectrical activity in cognition, consciousness, and some mental disorders. Med J Islam Repub Iran 2017; 31: 53.
    OpenUrlPubMed
  75. 75.
    1. Ribas VR,
    2. Ribas RG,
    3. Nóbrega JdA,
    4. da Nóbrega MV,
    5. Espécie JA,
    6. Calafange MT, et al.
    Pattern of anxiety, insecurity, fear, panic and/or phobia observed by quantitative electroencephalography (QEEG). Dement Neuropsychol 2018; 12: 264–271.
    OpenUrl
  76. 76.
    1. Attar ET.
    Depression Evaluation via Heart Rate Variability and Body Temperature. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies 2022; 13: 1–9.
    OpenUrl
  77. 77.
    1. Attar ET,
    2. Kaya M.
    Quantitative assessment of stress levels with biomedical sensors. IEEE 45th Annual Northeast Biomedical Engineering Conference (NEBEC), 2019. From URL: http://toc.proceedings.com/55243webtoc.pdf
  78. 78.↵
    1. Attar ET.
    Human attention and electroencephalogram. Adv Bioeng Biomed Sci Res 2022; 5: 127–132.
    OpenUrl
PreviousNext
Back to top

In this issue

Neurosciences Journal: 27 (4)
Neurosciences Journal
Vol. 27, Issue 4
1 Oct 2022
  • Table of Contents
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Neurosciences Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Review of electroencephalography signals approaches for mental stress assessment
(Your Name) has sent you a message from Neurosciences Journal
(Your Name) thought you would like to see the Neurosciences Journal web site.
Citation Tools
Review of electroencephalography signals approaches for mental stress assessment
Eyad T. Attar
Neurosciences Journal Oct 2022, 27 (4) 209-215; DOI: 10.17712/nsj.2022.4.20220025

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Review of electroencephalography signals approaches for mental stress assessment
Eyad T. Attar
Neurosciences Journal Oct 2022, 27 (4) 209-215; DOI: 10.17712/nsj.2022.4.20220025
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Discussion.
    • Acknowledgement
    • Footnotes
    • References
  • Figures & Data
  • eLetters
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Brain-Body Interactions Influence the Transition from Mind Wandering to Awareness of Ongoing Thought
  • Google Scholar

More in this TOC Section

  • Medication-overuse headache: clinical profile and management strategies
  • The role of exercise in Parkinson’s Disease
Show more Review

Similar Articles

Navigate

  • home

More Information

  • Help

Additional journals

  • All Topics

Other Services

  • About

© 2025 Neurosciences Journal Neurosciences is copyright under the Berne Convention and the International Copyright Convention. All rights reserved. Neurosciences is an Open Access journal and articles published are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC). Readers may copy, distribute, and display the work for non-commercial purposes with the proper citation of the original work. Electronic ISSN 1658-3183. Print ISSN 1319-6138.

Powered by HighWire