Skip to main content

Main menu

  • Home
  • Content
    • Latest
    • Ahead of print
    • Archive
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Alerts
    • Feedback
    • Folders
    • Help
  • Other Publications
    • Saudi Medical Journal

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Neurosciences Journal
  • Other Publications
    • Saudi Medical Journal
  • My alerts
  • Log in
Neurosciences Journal

Advanced Search

  • Home
  • Content
    • Latest
    • Ahead of print
    • Archive
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Alerts
    • Feedback
    • Folders
    • Help
  • Follow psmmc on Twitter
  • Visit psmmc on Facebook
  • RSS
Review ArticleReview Article
Open Access

Walk like me, talk like me

The connection between mirror neurons and autism spectrum disorder

Jillian M. Saffin and Hassaan Tohid
Neurosciences Journal April 2016, 21 (2) 108-119; DOI: https://doi.org/10.17712/nsj.2016.2.20150472
Jillian M. Saffin
From the Department of Psychology (Saffin), Northern Arizona University, Arizona, and the Department of Neurology (Tohid), University of California, Los Angeles, UCLA, the Center for Mind & Brain (Tohid), the Department of Neurology (Tohid), University of California, Davis, Davis, and the Department of Psychiatry (Tohid), Napa State Hospital, California, United States of America
BS, RBT
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hassaan Tohid
From the Department of Psychology (Saffin), Northern Arizona University, Arizona, and the Department of Neurology (Tohid), University of California, Los Angeles, UCLA, the Center for Mind & Brain (Tohid), the Department of Neurology (Tohid), University of California, Davis, Davis, and the Department of Psychiatry (Tohid), Napa State Hospital, California, United States of America
MBBS
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • eLetters
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. ↵
    1. Lai MC,
    2. Lombardo MV,
    3. Auyeung B,
    4. Chakrabarti B,
    5. Baron-Cohen S
    (2015) Sex/gender differences and autism: setting the scene for future research. J Am Acad Child Adolesc Psychiatry 54, 11–24.
  2. ↵
    1. Root NB,
    2. Case LK,
    3. Burrus CJ,
    4. Ramachandran VS
    (2015) External self-representations improve self-awareness in a child with autism. Neurocase 21, 206–210.
  3. ↵
    1. Lamm C,
    2. Majdandžić J
    (2015) The role of shared neural activations, mirror neurons, and morality in empathy--a critical comment. Neurosci Res 90, 15–24.
  4. ↵
    1. Schunke O,
    2. Schöttle D,
    3. Vettorazzi E,
    4. Brandt V,
    5. Kahl U,
    6. Bäumer T,
    7. et al.
    (2016) Mirror me: Imitative responses in adults with autism. Autism 20, 134–144.
  5. ↵
    1. Cerri G,
    2. Cabinio M,
    3. Blasi V,
    4. Borroni P,
    5. Iadanza A,
    6. Fava E,
    7. et al.
    (2015) The mirror neuron system and the strange case of Broca’s area. Hum Brain Mapp 36, 1010–1027.
  6. ↵
    1. Myers SM,
    2. Johnson CP
    (2007) American Academy of Pediatrics Council on Children With Disabilities Management of children with autism spectrum disorders. Pediatrics 120, 1162–1182.
  7. ↵
    1. Llaneza DC,
    2. DeLuke SV,
    3. Batista M,
    4. Crawley JN,
    5. Christodulu KV,
    6. Frye CA
    (2010) Communication, interventions, and scientific advances in autism: a commentary. Physiol Behav 100, 268–276.
  8. ↵
    1. Lauvin MA,
    2. Martineau J,
    3. Destrieux C,
    4. Andersson F,
    5. Bonnet-Brilhault F,
    6. Gomot M,
    7. et al.
    (2012) Functional morphological imaging of autism spectrum disorders: current position and theories proposed. Diagn Interv Imaging 93, 139–147.
  9. ↵
    1. Ngounou Wetie AG,
    2. Wormwood KL,
    3. Russell S,
    4. Ryan JP,
    5. Darie CC,
    6. Woods AG
    (2015) A Pilot Proteomic Analysis of Salivary Biomarkers in Autism Spectrum Disorder. Autism Res 8, 338–350.
  10. ↵
    1. Ramachandran VS,
    2. Oberman LM
    (2006) Broken mirrors: a theory of autism. Sci Am 295, 62–69.
  11. ↵
    1. Gallese V,
    2. Goldman A
    (1998) Mirror neurons and the simulation theory of mind-reading. Trends Cogn Sci 2, 493–501.
  12. ↵
    1. Di Pellegrino G,
    2. Fadiga L,
    3. Fogassi L,
    4. Gallese V,
    5. Rizzolatti G
    (1992) Understanding motor events: a neurophysiological study. Exp Brain Res 91, 176–180.
  13. ↵
    1. Gallese V
    (2007) Before and below ‘theory of mind’: embodied simulation and the neural correlates of social cognition. Philos Trans R Soc Lond B Biol Sci 362, 659–669.
  14. ↵
    1. Pineda JA,
    2. Carrasco K,
    3. Datko M,
    4. Pillen S,
    5. Schalles M
    (2014) Neurofeedback training produces normalization in behavioural and electrophysiological measures of high-functioning autism. Philos Trans R Soc Lond B Biol Sci 28, 369.
  15. ↵
    1. Mathon B
    (2013) Mirror neurons: from anatomy to pathophysiological and therapeutic implications. Rev Neurol 169, 285–290.
  16. ↵
    1. Mori K,
    2. Mori T,
    3. Goji A,
    4. Ito H,
    5. Toda Y,
    6. Fujii E,
    7. et al.
    (2014) [Hemodynamic activities in children with autism while imitating emotional facial expressions: a near-infrared spectroscopy study]. No To Hattatsu 46, 281–286, Japanese.
  17. ↵
    1. Murata A,
    2. Maeda K
    (2014) [What mirror neurons have revealed: revisited]. Brain Nerve 66, 635–646, Japanese.
  18. ↵
    1. Kilner JM,
    2. Lemon RN
    (2013) What we know currently about mirror neurons. Curr Biol 23, R1057–R1062.
  19. ↵
    1. Braadbaart L,
    2. Williams JH,
    3. Waiter GD
    (2013) Do mirror neuron areas mediate mu rhythm suppression during imitation and action observation? Int J Psychophysiol 89, 99–105.
  20. ↵
    1. Casartelli L,
    2. Molteni M
    (2014) Where there is a goal, there is a way: what, why and how the parieto-frontal mirror network can mediate imitative behaviours. Neurosci Biobehav Rev 47, 177–193.
  21. ↵
    1. Kosonogov V
    (2012) Why the Mirror Neurons Cannot Support Action Understanding. Neurophysiology 6, 499–502.
  22. ↵
    1. Southgate V,
    2. Hamilton AF
    (2008) Unbroken mirrors: challenging a theory of Autism. Trends Cogn Sci 12, 225–229.
  23. ↵
    1. Hamilton AF
    (2009) Goals, intentions and mental states: challenges for theories of autism. J Child Psychol Psychiatry 50, 881–892.
  24. ↵
    1. Rizzolatti G,
    2. Sinigaglia C
    (2010) The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nat Rev Neurosci 11, 264–274.
  25. ↵
    1. Spengler S,
    2. Bird G,
    3. Brass M
    (2010) Hyperimitation of actions is related to reduced understanding of others’ minds in autism spectrum conditions. Biol Psychiatry 68, 1148–1155.
  26. ↵
    1. Williams JH
    (2008) SelF-other relations in social development and autism: multiple roles for mirror neurons and other brain bases. Autism Res 1, 73–90.
  27. ↵
    1. Oberman LM,
    2. Ramachandran VS
    (2007) The simulating social mind: the role of the mirror neuron system and simulation in the social and communicative deficits of autism spectrum disorders. Psychol Bull 133, 310–227.
  28. ↵
    1. Oztop E,
    2. Kawato M,
    3. Arbib MA
    (2013) Mirror neurons: functions, mechanisms and models. Neurosci Lett 540, 43–55.
  29. ↵
    1. Heyes C
    (2010) Where do mirror neurons come from? Neurosci Biobehav Rev 34, 575–583.
  30. ↵
    1. Agnew ZK,
    2. Wise RJ,
    3. Leech R
    (2012) Dissociating object directed and non-object directed action in the human mirror system;implications for theories of motor simulation. PLoS One 7, e32517.
  31. ↵
    1. Paukner A,
    2. Suomi SJ,
    3. Visalberghi E,
    4. Ferrari PF
    (2009) Capuchin monkeys display affiliation toward humans who imitate them. Science 325, 880–883.
  32. ↵
    1. Sale P,
    2. Franceschini M
    (2012) Action observation and mirror neuron network: a tool for motor stroke rehabilitation. Eur J Phys Rehabil Med 48, 313–318.
  33. ↵
    1. Lui F,
    2. Buccino G,
    3. Duzzi D,
    4. Benuzzi F,
    5. Crisi G,
    6. Baraldi P,
    7. et al.
    (2008) Neural substrates for observing and imagining non-object-directed actions. Soc Neurosci 3, 261–275.
  34. ↵
    1. Oosterhof NN,
    2. Wiggett AJ,
    3. Diedrichsen J,
    4. Tipper SP,
    5. Downing PE
    (2010) Surface-based information mapping reveals crossmodal vision-action representations in human parietal and occipitotemporal cortex. J Neurophysiol 104, 1077–1089.
  35. ↵
    1. Fogassi L,
    2. Ferrari PF,
    3. Gesierich B,
    4. Rozzi S,
    5. Chersi F,
    6. Rizzolatti G
    (2005) Parietal lobe: from action organization to intention understanding. Science 308, 662–667.
  36. ↵
    1. Haroush K,
    2. Williams ZM
    (2015) Neuronal prediction of opponent’s behavior during cooperative social interchange in primates. Cell 160, 1233–1245.
  37. ↵
    1. Woodruff CC,
    2. Maaske S
    (2010) Action execution engages human mirror neuron system more than action observation. Neuroreport 21, 432–435.
  38. ↵
    1. Agnew ZK,
    2. Brownsett S,
    3. Woodhead Z,
    4. de Boissezon X
    (2008) A step forward for mirror neurons? Investigating the functional link between action execution and action observation in limb apraxia. J Neurosci 28, 7726–7727.
  39. ↵
    1. D’Ausilio A,
    2. Bartoli E,
    3. Maffongelli L
    (2015) Grasping synergies: a motor-control approach to the mirror neuron mechanism. Phys Life Rev 12, 91–103.
  40. ↵
    1. Cattaneo L
    (2015) Granularity within the mirror system is not informative on action perception: comment on “Grasping synergies: a motor-control approach to the mirror neuron mechanism” by D’Ausilio et al. Phys Life Rev 12, 123–125.
  41. ↵
    1. Mukamel R,
    2. Ekstrom AD,
    3. Kaplan J,
    4. Iacoboni M,
    5. Fried I
    (2010) Single-neuron responses in humans during execution and observation of actions. Curr Biol 20, 750–756.
  42. ↵
    1. Yoshida K,
    2. Saito N,
    3. Iriki A,
    4. Isoda M
    (2011) Representation of others’ action by neurons in monkey medial frontal cortex. Curr Biol 21, 249–253.
  43. ↵
    1. Hogeveen J,
    2. Chartrand TL,
    3. Obhi SS
    (2015) Social Mimicry Enhances Mu-Suppression During Action Observation. Cereb Cortex 25, 2076–2082.
  44. ↵
    1. Fontana AP,
    2. Kilner JM,
    3. Rodrigues EC,
    4. Joffily M,
    5. Nighoghossian N,
    6. Vargas CD,
    7. et al.
    (2012) Role of the parietal cortex in predicting incoming actions. Neuroimage 59, 556–564.
  45. ↵
    1. Shmuelof L,
    2. Zohary E
    (2008) Mirror-image representation of action in the anterior parietal cortex. Nat Neurosci 11, 1267–1269.
  46. ↵
    1. Maranesi M,
    2. Livi A,
    3. Fogassi L,
    4. Rizzolatti G,
    5. Bonini L
    (2014) Mirror neuron activation prior to action observation in a predictable context. J Neurosci 34, 14827–14832.
  47. ↵
    1. Lauvin MA,
    2. Martineau J,
    3. Destrieux C,
    4. Andersson F,
    5. Bonnet-Brilhault F,
    6. Gomot M,
    7. et al.
    (2012) Functional morphological imaging of autism spectrum disorders: current position and theories proposed. Diagn Interv Imaging 93, 139–147.
  48. ↵
    1. Kana RK,
    2. Libero LE,
    3. Moore MS
    Disrupted cortical connectivity theory as an explanatory model for autism spectrum disorders. Phys Life Rev 201; 8, 410–437.
  49. ↵
    1. Ebisch SJ,
    2. Gallese V,
    3. Willems RM,
    4. Mantini D,
    5. Groen WB,
    6. Romani GL,
    7. et al.
    (2011) Altered intrinsic functional connectivity of anterior and posterior insula regions in high-functioning participantswith autism spectrum disorder. Hum Brain Mapp 32, 1013–1028.
  50. ↵
    1. Ishida H,
    2. Suzuki K,
    3. Grandi LC
    (2015) Predictive coding accounts of shared representations in parieto-insular networks. Neuropsychologia 70, 442–454.
    1. Inui T
    (2014) [Human mirror neuron system]. Brain Nerve 66, 647–653, Japanese.
    1. Ferrari PF
    (2014) The neuroscience of social relations. A comparative-based approach to empathy and to the capacity of evaluating others’ action value. Behaviour 151, 297–313.
  51. ↵
    1. Kim YT,
    2. Seo JH,
    3. Song HJ,
    4. Yoo DS,
    5. Lee HJ,
    6. Lee J,
    7. et al.
    (2011) Neural correlates related to action observation in expert archers. Behav Brain Res 223, 342–347.
  52. ↵
    1. Kana RK,
    2. Murdaugh DL,
    3. Libero LE,
    4. Pennick MR,
    5. Wadsworth HM,
    6. Deshpande R,
    7. et al.
    (201) Probing the brain in autism using FMRI and diffusion tensor imaging. J Vis Exp 12, 55.
  53. ↵
    1. Dapretto M,
    2. Davies MS,
    3. Pfeifer JH,
    4. Scott AA,
    5. Sigman M,
    6. Bookheimer SY,
    7. et al.
    (2006) Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders. Nat Neurosci 9, 28–30.
  54. ↵
    1. Villarreal M,
    2. Fridman EA,
    3. Amengual A,
    4. Falasco G,
    5. Gerschcovich ER,
    6. Ulloa ER,
    7. et al.
    (2008) The neural substrate of gesture recognition. Neuropsychologia 46, 2371–2382.
  55. ↵
    1. Fishman I,
    2. Keown CL,
    3. Lincoln AJ,
    4. Pineda JA,
    5. Müller RA
    (2014) Atypical cross talk between mentalizing and mirror neuron networks in autism spectrum disorder. JAMA Psychiatry 71, 751–760.
    1. O’Connor K,
    2. Kirk I
    (2008) Brief report: atypical social cognition and social behaviours in autism spectrum disorder: a different way of processing rather than an impairment. J Autism Dev Disord 38, 1989–1997.
    1. Williams JH,
    2. Waiter GD,
    3. Gilchrist A,
    4. Perrett DI,
    5. Murray AD,
    6. Whiten A
    (2006) Neural mechanisms of imitation and ‘mirror neuron’ functioning in autistic spectrum disorder. Neuropsychologia 44, 610–621.
  56. ↵
    1. Duffy FH,
    2. Als H
    (2012) A stable pattern of EEG spectral coherence distinguishes children with autism from neuro-typical controls - a large case control study. BMC Med 10, 64.
  57. ↵
    1. Schipul SE,
    2. Keller TA,
    3. Just MA
    (201) Inter-regional brain communication and its disturbance in autism. Front Syst Neurosci 5, 10.
  58. ↵
    1. Hamilton AF
    (2013) Reflecting on the mirror neuron system in autism: a systematic review of current theories. Dev Cogn Neurosci 3, 91–105.
  59. ↵
    1. Ruysschaert L,
    2. Warreyn P,
    3. Wiersema JR,
    4. Oostra A,
    5. Roeyers H
    (2014) Exploring the role of neural mirroring in children with autism spectrum disorder. Autism Res 7, 197–206.
  60. ↵
    1. Raymaekers R,
    2. Wiersema JR,
    3. Roeyers H
    (2009) EEG study of the mirror neuron system in children with high functioning autism. Brain Res 1304, 113–121.
  61. ↵
    1. Vivanti G,
    2. Rogers SJ
    (2014) Autism and the mirror neuron system: insights from learning and teaching. Philos Trans R Soc Lond B Biol Sci 369, 20130184.
  62. ↵
    1. Pineda JA,
    2. Juavinett A,
    3. Datko M
    (2012) Self-regulation of brain oscillations as a treatment for aberrant brain connections in children with autism. Med Hypotheses 79, 790–798.
  63. ↵
    1. Perkins T,
    2. Stokes M,
    3. McGillivray J,
    4. Bittar R
    (2010) Mirror neuron dysfunction in autism spectrum disorders. J Clin Neurosci 17, 1239–1243.
    1. Bastiaansen JA,
    2. Thioux M,
    3. Nanetti L,
    4. van der Gaag C,
    5. Ketelaars C,
    6. Minderaa R,
    7. et al.
    (2011) Age-related increase in inferior frontal gyrus activity and social functioning in autism spectrum disorder. Biol Psychiatry 69, 832–838.
  64. ↵
    1. Saby JN,
    2. Meltzoff AN,
    3. Marshall PJ
    (2013) Infants’ somatotopic neural responses to seeing human actions: I’ve got you under my skin. PLoS One 8, e77905.
  65. ↵
    1. Perkins TJ,
    2. Bittar RG,
    3. McGillivray JA,
    4. Cox II,
    5. Stokes MA
    (2015) Increased premotor cortex activation in high functioning autism during action observation. J Clin Neurosci 22, 664–669.
  66. ↵
    1. Nyström P
    (2008) The infant mirror neuron system studied with high density EEG. Soc Neurosci 3, 334–347.
  67. ↵
    1. Nyström P,
    2. Ljunghammar T,
    3. Rosander K,
    4. von Hofsten C
    (2011) Using mu rhythm desynchronization to measure mirror neuron activity in infants. Dev Sci 14, 327–335.
  68. ↵
    1. Simpson EA,
    2. Murray L,
    3. Paukner A,
    4. Ferrari PF
    (2014) The mirror neuron system as revealed through neonatal imitation: presence from birth, predictive power and evidence of plasticity. Philos Trans R Soc Lond B Biol Sci 28, 369.
  69. ↵
    1. Marshall PJ,
    2. Meltzoff AN
    (2014) Neural mirroring mechanisms and imitation in human infants. Philos Trans R Soc Lond B Biol Sci 28, 369.
  70. ↵
    1. Shmuelof L,
    2. Zohary E
    (2007) Watching others’ actions: mirror representations in the parietal cortex. Neuroscientist 13, 667–672.
  71. ↵
    1. Cross KA,
    2. Iacoboni M
    (2014) Neural systems for preparatory control of imitation. Philos Trans R Soc Lond B Biol Sci 369, 20130176.
  72. ↵
    1. Buccino G,
    2. Amore M
    (2008) Mirror neurons and the understanding of behavioural symptoms in psychiatric disorders. Curr Opin Psychiatry 21, 281–285.
  73. ↵
    1. Gallese V,
    2. Fadiga L,
    3. Fogassi L,
    4. Rizzolatti G
    (1996) Action recognition in the premotor cortex. Brain 119, 593–609.
  74. ↵
    1. Rizzolatti G,
    2. Camarda R,
    3. Fogassi L,
    4. Gentilucci M,
    5. Luppino G,
    6. Matelli M
    (1988) Functional organization of inferior area 6 in the macaque monkey II. Area F5and the control of distal movement. Exp Brain Res 71, 491–507.
  75. ↵
    1. Murata A,
    2. Fadiga L,
    3. Fogassi L,
    4. Gallese V,
    5. Raos V,
    6. Rizzolatti G
    (1997) Object representation in the ventral premotor cortex (area F5) of the monkey. J Neurophysiol 78, 2226–2230.
  76. ↵
    1. Mosconi MW,
    2. Wang Z,
    3. Schmitt LM,
    4. Tsai P,
    5. Sweeney JA
    (2015) The role of cerebellar circuitry alterations in the pathophysiology of autism spectrum disorders. Front Neurosci 9, 296.
  77. ↵
    1. Bailey A,
    2. Luthert P,
    3. Dean A,
    4. Harding B,
    5. Janota I,
    6. Montgomery M,
    7. et al.
    (1998) A clinicopathological study of autism. Brain 121, 889–905.
    1. Bauman M,
    2. Kemper TL
    (1985) Histoanatomic observations of the brain in early infantile autism. Neurology 35, 866–874.
    1. Arin DM,
    2. Bauman ML,
    3. Kemper TL
    (1991) The distribution of Purkinje cell loss in the cerebellum in autism. Neurology 41, 307.
    1. Whitney ER,
    2. Kemper TL,
    3. Bauman ML,
    4. Rosene DL,
    5. Blatt GJ
    (2008) Cerebellar Purkinje cells are reduced in a subpopulation of autistic brains: a stereological experiment using calbindin-D28k. Cerebellum 7, 406–416.
    1. Whitney ER,
    2. Kemper TL,
    3. Rosene DL,
    4. Bauman ML,
    5. Blatt GJ
    (2009) Density of cerebellar basket and stellate cells in autism: evidence for a late developmental loss of Purkinje cells. J Neurosci Res 87, 2245–2254.
  78. ↵
    1. Wegiel J,
    2. Flory M,
    3. Kuchna I,
    4. Nowicki K,
    5. Ma S Y,
    6. Imaki H,
    7. et al.
    (2014) Stereological study of the neuronal number and volume of 38 brain subdivisions of subjects diagnosed with autism reveals significant alterations restricted to the striatum, amygdala and cerebellum. Acta Neuropathol Commun 18, 2, 141.
  79. ↵
    1. Fatemi SH,
    2. Halt AR,
    3. Realmuto G,
    4. Earle J,
    5. Kist DA,
    6. Thuras P,
    7. et al.
    (2002) Purkinje cell size is reduced in cerebellum of patients with autism. Cell Mol Neurobiol 22, 171–175.
  80. ↵
    1. Braadbaart L,
    2. Williams JH,
    3. Waiter GD
    (2013) Do mirror neuron areas mediate mu rhythm suppression during imitation and action observation? Int J Psychophysiol 89, 99–105.
    1. Brunner IC,
    2. Skouen JS,
    3. Ersland L,
    4. Grüner R
    (2014) Plasticity and response to action observation: a longitudinal FMRI study of potential mirror neurons in patients with subacute stroke. Neurorehabil Neural Repair 28, 874–884.
  81. ↵
    1. Von Hofsten C,
    2. Rosander K
    (2012) Perception-action in children with ASD. Front Integr Neurosci 6, 115.
  82. ↵
    1. Molenberghs P,
    2. Cunnington R,
    3. Mattingley JB
    (2012) Brain regions with mirror properties: a meta-analysis of 125 human fMRI studies. Neurosci Biobehav Rev 36, 341–349.
  83. ↵
    1. Kana RK,
    2. Wadsworth HM,
    3. Travers BG
    (2011) A systems level analysis of the mirror neuron hypothesis and imitation impairments in autism spectrum disorders. Neurosci Biobehav Rev 35, 894–902.
  84. ↵
    1. Codagnone MG,
    2. Podestá MF,
    3. Uccelli NA,
    4. Reinés A
    (2015) Differential Local Connectivity and Neuroinflammation Profiles in the Medial Prefrontal Cortex and Hippocampus in the Valproic Acid Rat Model of Autism. Dev Neurosci 37, 215–231.
    1. Ameis SH,
    2. Catani M
    (2015) Altered white matter connectivity as a neural substrate for social impairment in Autism Spectrum Disorder. Cortex 62, 158–181.
  85. ↵
    1. Zalla T
    (2014) Amygdala, oxytocin, and social cognition in autism spectrum disorders. Biol Psychiatry 76, 356–357.
  86. ↵
    1. Sosa-Díaz N,
    2. Bringas ME,
    3. Atzori M,
    4. Flores G
    (2014) Prefrontal cortex, hippocampus, and basolateral amygdala plasticity in a rat model of autism spectrum. Synapse 68, 468–473.
  87. ↵
    1. Ushakov VL,
    2. Kartashov SI,
    3. Zavyalova VV,
    4. Bezverhiy DD,
    5. Posichanyuk VI,
    6. Terentev VN,
    7. et al.
    (2013) Network activity of mirror neurons depends on experience. J Integr Neurosci 12, 35–46.
  88. ↵
    1. Mihov Y,
    2. Kendrick KM,
    3. Becker B,
    4. Zschernack J,
    5. Reich H,
    6. Maier W,
    7. et al.
    (2013) Mirroring fear in the absence of a functional amygdala. Biol Psychiatry 73, 9–11.
  89. ↵
    1. Pohl A,
    2. Anders S,
    3. Schulte-Rüther M,
    4. Mathiak K,
    5. Kircher T
    (2013) Positive facial affect - an fMRI study on the involvement of insula and amygdala. PLoS One 8, e69886.
  90. ↵
    1. Van der Gaag C,
    2. Minderaa RB,
    3. Keysers C
    (2007) The BOLD signal in the amygdala does not differentiate between dynamic facial expressions. Soc Cogn Affect Neurosci 2, 93–103.
  91. ↵
    1. Sergerie K,
    2. Chochol C,
    3. Armony JL
    (2008) The role of the amygdala in emotional processing: a quantitative meta-analysis of functional neuroimaging studies. Neuroscience & Biobehavioral Reviews 32, 811–830.
  92. ↵
    1. Sander D,
    2. Grafman J,
    3. Zalla T
    (2003) The human amygdala: an evolved system for relevance detection. Rev Neurosci 14, 303–316.
  93. ↵
    1. Adelmann PK,
    2. Zajonc RB
    (1989) Facial efference and the experience of emotion. Annual Review of Psychology 40, 249–280.
  94. ↵
    1. Phan KL,
    2. Wager T,
    3. Taylor SF,
    4. Liberzon I
    (2002) Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage 16, 331–348.
    1. Craig AD
    (2009) How do you feel - now? The anterior insula and human awareness. Nat Rev Neurosci 10, 59–70.
  95. ↵
    1. Anders S,
    2. Lotze M,
    3. Erb M,
    4. Grodd W,
    5. Birbaumer N
    (2004) Brain activity underlying emotional valence and arousal: A response-related fMRI study. Human Brain Mapping 23, 200–209.
  96. ↵
    1. Sussman D,
    2. Leung RC,
    3. Vogan VM,
    4. Lee W,
    5. Trelle S,
    6. Lin S,
    7. et al.
    (2015) The autism puzzle: Diffuse but not pervasive neuroanatomical abnormalities in children with ASD. Neuroimage Clin 8, 170–179.
    1. McKavanagh R,
    2. Buckley E,
    3. Chance SA
    (2015) Wider minicolumns in autism: a neural basis for altered processing? Brain 138, 2034–2045.
  97. ↵
    1. Solso S,
    2. Xu R,
    3. Proudfoot J,
    4. Hagler DJ Jr.,
    5. Campbell K,
    6. Venkatraman V,
    7. et al.
    (2015) Diffusion Tensor Imaging Provides Evidence of Possible Axonal Overconnectivity in Frontal Lobes in AutismSpectrum Disorder Toddlers. Biol Psychiatry 4, S0006–3223.
  98. ↵
    1. Buccino G,
    2. Binkofski F,
    3. Fink GR,
    4. Fadiga L,
    5. Fogassi L,
    6. Gallese V,
    7. et al.
    (2001) Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur J Neurosc 13, 400–404.
  99. ↵
    1. Keysers C,
    2. Wicker B,
    3. Gazzola V,
    4. Anton JL,
    5. Fogassi L,
    6. Gallese V
    (2004) A touching sight: SII/PV activation during the observation and experience of touch. Neuron 42, 335–346.
  100. ↵
    1. Ebisch SJ,
    2. Perruci MG,
    3. Ferretti A,
    4. Del Gratta C,
    5. Romani GL,
    6. Gallese V
    (2008) The sense of touch: embodied simulation in a visuotactile mirroring mechanism for observed animate or inanimate touch. J Cogn Neurosci 20, 1–13.
  101. ↵
    1. Keysers C,
    2. Gazzola V
    (2009) Expanding the mirror: vicarious activity for actions, emotions, and sensations. Curr Opin Neurobiol 19, 666–671.
  102. ↵
    1. Keysers C,
    2. Kaas JH,
    3. Gazzola V
    (2010) Somatosensation in social perception. Nat Rev Neurosci 11, 417–428.
  103. ↵
    1. Lange N,
    2. Travers BG,
    3. Bigler ED,
    4. Prigge MB,
    5. Froehlich AL,
    6. Nielsen JA,
    7. et al.
    (2015) Longitudinal volumetric brain changes in autism spectrum disorder ages 6-35 years. Autism Res 8, 82–93.
  104. ↵
    1. Movsas TZ,
    2. Pinto-Martin JA,
    3. Whitaker AH,
    4. Feldman JF,
    5. Lorenz JM,
    6. Korzeniewski SJ,
    7. et al.
    (2013) Autism spectrum disorder is associated with ventricular enlargement in a low birth weight population. J Pediatr 163, 73–78.
  105. ↵
    1. Foster NE,
    2. Doyle-Thomas KA,
    3. Tryfon A,
    4. Ouimet T,
    5. Anagnostou E,
    6. Evans AC,
    7. et al.
    (2015) Structural Gray Matter Differences During Childhood Development in Autism Spectrum Disorder: A Multimetric Approach. Pediatr Neurol 53, 350–359.
  106. ↵
    1. Sato W,
    2. Kubota Y,
    3. Kochiyama T,
    4. Uono S,
    5. Yoshimura S,
    6. Sawada R,
    7. et al.
    (2014) Increased putamen volume in adults with autism spectrum disorder. Front Hum Neurosci 8, 957.
  107. ↵
    1. Doyle-Thomas KA,
    2. Card D,
    3. Soorya LV,
    4. Wang AT,
    5. Fan J,
    6. Anagnostou E
    (2014) Metabolic mapping of deep brain structures and associations with symptomatology in autism spectrum disorders. Res Autism Spectr Disord 8, 44–51.
  108. ↵
    1. Damiano CR,
    2. Cockrell DC,
    3. Dunlap K,
    4. Hanna EK,
    5. Miller S,
    6. Bizzell J,
    7. et al.
    (2015) Neural mechanisms of negative reinforcement in children and adolescents with autism spectrum disorders. J Neurodev Disord 7, 12.
  109. ↵
    1. Wolff JJ,
    2. Hazlett HC,
    3. Lightbody AA,
    4. Reiss AL,
    5. Piven J
    (2013) Repetitive and self-injurious behaviors: associations with caudate volume in autism and fragile X syndrome. J Neurodev Disord 5, 12.
  110. ↵
    1. Marshall PJ,
    2. Meltzoff AN
    (2011) Neural mirroring systems: exploring the EEG μrhythm in human infancy. Dev Cogn Neurosci 1, 110–123.
    1. Fan YT,
    2. Decety J,
    3. Yang CY,
    4. Liu JL,
    5. Cheng Y
    (2010) Unbroken mirror neurons in autism spectrum disorders. J Child Psychol Psychiatry 51, 981–988.
    1. Frenkel-Toledo S,
    2. Bentin S,
    3. Perry A,
    4. Liebermann DG,
    5. Soroker N
    (2014) Mirror-neuron system recruitment by action observation: effects of focal brain damage on mu suppression. Neuroimage 87, 127–137.
    1. Cannon EN,
    2. Yoo KH,
    3. Vanderwert RE,
    4. Ferrari PF,
    5. Woodward AL,
    6. Fox NA
    (2014) Action experience, more than observation, influences mu rhythm desynchronization. PLoS One 9, e92002.
    1. Vanderwert RE,
    2. Fox NA,
    3. Ferrari PF
    (2013) The mirror mechanism and mu rhythm in social development. Neurosci Lett 540, 15–20.
    1. Palau-Baduell M,
    2. Valls-Santasusana A,
    3. Salvadó-Salvadó B
    (2011) [Autism spectrum disorders and mu rhythm. A new neurophysiological view]. Rev Neurol 521, S141–S146, Spanish.
    1. Palau-Baduell M,
    2. Valls-Santasusana A,
    3. Salvadó-Salvadó B,
    4. Clofent-Torrentó M
    (2013) [Interest of electroencephalogram in autism]. Rev Neurol 56, S35–S43, Spanish.
  111. ↵
    1. Oberman LM,
    2. Hubbard EM,
    3. McCleery JP,
    4. Altschuler EL,
    5. Ramachandran VS,
    6. Pineda JA
    (2005) EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Brain Res Cogn Brain Res 24, 190–198.
PreviousNext
Back to top

In this issue

Neurosciences Journal: 21 (2)
Neurosciences Journal
Vol. 21, Issue 2
1 Apr 2016
  • Table of Contents
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Neurosciences Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Walk like me, talk like me
(Your Name) has sent you a message from Neurosciences Journal
(Your Name) thought you would like to see the Neurosciences Journal web site.
Citation Tools
Walk like me, talk like me
Jillian M. Saffin, Hassaan Tohid
Neurosciences Journal Apr 2016, 21 (2) 108-119; DOI: 10.17712/nsj.2016.2.20150472

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Walk like me, talk like me
Jillian M. Saffin, Hassaan Tohid
Neurosciences Journal Apr 2016, 21 (2) 108-119; DOI: 10.17712/nsj.2016.2.20150472
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • References
  • Figures & Data
  • eLetters
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Structural and functional changes in the hippocampus induced by environmental exposures
  • Tumefactive demyelinating lesions: A literature review of recent findings
  • Epilepsia partialis continua: A review
Show more Review Article

Similar Articles

Navigate

  • home

More Information

  • Help

Additional journals

  • All Topics

Other Services

  • About

© 2025 Neurosciences Journal Neurosciences is copyright under the Berne Convention and the International Copyright Convention. All rights reserved. Neurosciences is an Open Access journal and articles published are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC). Readers may copy, distribute, and display the work for non-commercial purposes with the proper citation of the original work. Electronic ISSN 1658-3183. Print ISSN 1319-6138.

Powered by HighWire