Skip to main content

Main menu

  • Home
  • Content
    • Latest
    • Ahead of print
    • Archive
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Alerts
    • Feedback
    • Folders
    • Help
  • Other Publications
    • Saudi Medical Journal

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Neurosciences Journal
  • Other Publications
    • Saudi Medical Journal
  • My alerts
  • Log in
Neurosciences Journal

Advanced Search

  • Home
  • Content
    • Latest
    • Ahead of print
    • Archive
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Alerts
    • Feedback
    • Folders
    • Help
  • Follow psmmc on Twitter
  • Visit psmmc on Facebook
  • RSS
Review ArticleReview
Open Access

Treating epilepsy with options other than antiepileptic medications

Osama Y. Muthaffar
Neurosciences Journal August 2020, 25 (4) 253-261; DOI: https://doi.org/10.17712/nsj.2020.4.20200010
Osama Y. Muthaffar
Department of Pediatrics, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
SBPN, ABCN
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • eLetters
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. ↵
    1. Fiest KM,
    2. Sauro KM,
    3. Wiebe S,
    4. Patten SB,
    5. Kwon CS,
    6. Dykeman J,
    7. et al.
    (2017) Prevalence and incidence of epilepsy: A systematic review and meta-analysis of international studies. Neurology 88, 296–303.
  2. ↵
    1. Al Rajeh S,
    2. Awada A,
    3. Bademosi O,
    4. Ogunniyi A
    (2001) The prevalence of epilepsy and other seizure disorders in an Arab population: a community-based study. Seizure 10, 410–414.
  3. ↵
    1. Brodie MJ
    (2010) Seizure. Antiepileptic drug therapy the story so far. Seizure 19, 650–655.
  4. ↵
    1. Sinha S,
    2. Siddiqui KA
    (2011) Definition of intractable epilepsy. Neurosciences (Riyadh) 16, 3–9.
  5. ↵
    1. Gospe SM Jr.
    (2010) Neonatal vitamin-responsive epileptic encephalopathies. Chang Gung Med J 33, 1–12.
  6. ↵
    1. Tabarki B,
    2. Thabet F
    (2013) Vitamin-responsive epilepsies: an update. Arch Pediatr 20, 1236–1241.
  7. ↵
    1. Coughlin CR II.,
    2. Swanson MA,
    3. Spector E,
    4. Meeks NJL,
    5. Kronquist KE,
    6. Aslamy M,
    7. et al.
    (2019) The genotypic spectrum of ALDH7A1 mutations resulting in pyridoxine dependent epilepsy: A common epileptic encephalopathy. J Inherit Metab Dis 42, 353–361.
  8. ↵
    1. Falsaperla R,
    2. Corsello G
    (2017) Pyridoxine dependent epilepsies: new therapeutical point of view. Ital J Pediatr 43, 68.
  9. ↵
    1. Xue J,
    2. Chang X,
    3. Zhang Y,
    4. Yang Z
    (2017) Novel phenotypes of pyridox(am)ine-5’-phosphate oxidase deficiency and high prevalence of c.445_448del mutation in Chinese patients. Metab Brain Dis 32, 1081–1087.
  10. ↵
    1. Gallagher RC,
    2. Van Hove JL,
    3. Scharer G,
    4. Hyland K,
    5. Plecko B,
    6. Waters PJ,
    7. et al.
    (2009) Folinic acid-responsive seizures are identical to pyridoxine-dependent epilepsy. Ann Neurol 65, 550–556.
  11. ↵
    1. Al-Baradie RS,
    2. Chaudhary MW
    (2014) Diagnosis and management of cerebral folate deficiency: A form of folinic acid-responsive seizures. Neurosciences (Riyadh) 19, 312–316.
  12. ↵
    1. Canda E,
    2. Yazici H,
    3. Er E,
    4. Kose M,
    5. Basol G,
    6. Onay H,
    7. et al.
    (2018) Single center experience of biotinidase deficiency: 259 patients and six novel mutations. J Pediatr Endocrinol Metab 31, 917–926.
  13. ↵
    1. Alfadhel M,
    2. Almuntashri M,
    3. Jadah RH,
    4. Bashiri FA,
    5. Al Rifai MT,
    6. Al Shalaan H,
    7. et al.
    (2013) Biotin-responsive basal ganglia disease should be renamed biotin-thiamine-responsive basal ganglia disease: a retrospective review of the clinical, radiological and molecular findings of 18 new cases. Orphanet J Rare Dis 8, 83.
  14. ↵
    1. Mørkrid L,
    2. Rowe AD,
    3. Elgstoen KB,
    4. Olesen JH,
    5. Ruijter G,
    6. Hall PL,
    7. et al.
    (2015) Continuous age- and sex-adjusted reference intervals of urinary markers for cerebral creatine deficiency syndromes: a novel approach to the definition of reference intervals. Clin Chem 61, 760–768.
  15. ↵
    1. Rostami P,
    2. Hosseinpour S,
    3. Ashrafi MR,
    4. Alizadeh H,
    5. Garshasbi M,
    6. Tavasoli AR
    (2019) Primary creatine deficiency syndrome as a potential missed diagnosis in children with psychomotor delay and seizure: case presentation with two novel variants and literature review. Acta Neurol Belg 20.
  16. ↵
    1. Daci A,
    2. Bozalija A,
    3. Jashari F,
    4. Krasniqi S
    (2018) Individualizing Treatment Approaches for Epileptic Patients with Glucose Transporter Type1 (GLUT-1) Deficiency. Int J Mol Sci 19, 122.
  17. ↵
    1. Murayama K,
    2. Shimura M,
    3. Liu Z,
    4. Okazaki Y,
    5. Ohtake A
    (2019) Recent topics: the diagnosis, molecular genesis, and treatment of mitochondrial diseases. J Hum Genet 64, 113–125.
  18. ↵
    1. Hirano M,
    2. Emmanuele V,
    3. Quinzii CM
    (2018) Emerging therapies for mitochondrial diseases. Essays Biochem 62, 467–481.
  19. ↵
    1. Summar ML,
    2. Ah Mew N
    (2018) Inborn errors of metabolism with hyperammonemia: urea cycle defects and related disorders. Pediatric Clinics of North America 65, 231–246.
  20. ↵
    1. Matsumoto S,
    2. Häberle J,
    3. Kido J,
    4. Mitsubuchi H,
    5. Endo F,
    6. Nakamura K
    (2019) Urea cycle disorders-update. J Hum Genet 64, 833–847.
  21. ↵
    1. Soria LR,
    2. Ah Mew N,
    3. Brunetti-Pierri N
    (2019) Progress and challenges in development of new therapies for urea cycle disorders. Hum Mol Genet 28, R42–R48.
  22. ↵
    1. Zayed H,
    2. El Khayat H,
    3. Tomoum H,
    4. Khalifa O,
    5. Siddiq E,
    6. Mohammad SA,
    7. et al.
    (2019) Clinical, biochemical, neuroradiological and molecular characterization of Egyptian patients with glutaric acidemia type 1. Metab Brain Dis 34, 1231–1241.
  23. ↵
    1. Boy N,
    2. Mühlhausen C,
    3. Maier EM,
    4. Heringer J,
    5. Assmann B,
    6. Burgard P,
    7. et al.
    (2017) Proposed recommendations for diagnosing and managing individuals with glutaric aciduria type I: second revision. J Inherit Metab Dis 40, 75–101.
  24. ↵
    1. Mechler K,
    2. Mountford WK,
    3. Hoffmann GF,
    4. Ries M
    (2015) Ultra-orphan diseases: a quantitative analysis of the natural history of molybdenum cofactor deficiency. Genet Med 17, 965–970.
  25. ↵
    1. Scelsa B,
    2. Gasperini S,
    3. Righini A,
    4. Iascone M,
    5. Brazzoduro VG,
    6. Veggiotti P
    (2019) Mild phenotype in Molybdenum cofactor deficiency: A new patient and review of the literature. Mol Genet Genomic Med 7, e657.
  26. ↵
    1. Edwards M,
    2. Roeper J,
    3. Allgood C,
    4. Chin R,
    5. Santamaria J,
    6. Wong F,
    7. et al.
    (2015) Investigation of molybdenum cofactor deficiency due to MOCS2 deficiency in a newborn baby. Meta Gene 31, 3, 43–49.
  27. ↵
    1. Longo N
    (2009) Disorders of biopterin metabolism. J Inherit Metab Dis 32, 333–342.
  28. ↵
    1. Schulz A,
    2. Ajayi T,
    3. Specchio N,
    4. de Los Reyes E,
    5. Gissen P,
    6. Ballon D,
    7. et al.
    (2018) Study of intraventricular cerliponase alfa for CLN2 disease. N Engl J Med 378, 1898–1907.
  29. ↵
    1. Griffey M,
    2. Bible E,
    3. Vogler C,
    4. Levy B,
    5. Gupta P,
    6. Cooper J,
    7. et al.
    (2004) Adeno-associated virus 2-mediated gene therapy decreases autofluorescent storage material and increases brain mass in a murine model of infantile neuronal ceroid lipofuscinosis. Neurobiol Dis 16, 360–369.
  30. ↵
    1. Augustine EF,
    2. Beck CA,
    3. Adams HR,
    4. Defendorf S,
    5. Vierhile A,
    6. Timm D,
    7. et al.
    (2019) Short-Term Administration of Mycophenolate Is Well-Tolerated in CLN3 Disease (Juvenile Neuronal Ceroid Lipofuscinosis). JIMD Rep 43, 117–124.
  31. ↵
    1. Skjørringe T,
    2. Pedersen PA,
    3. Thorborg SS,
    4. Nissen P,
    5. Gourdon P,
    6. Møller LB
    (2017) Characterization of ATP7A missense mutants suggests a correlation between intracellular trafficking and severity of Menkes disease. Sci Rep 7, 757.
  32. ↵
    1. Ogata R,
    2. Chong PF,
    3. Maeda K,
    4. Imagi T,
    5. Nakamura R,
    6. Kawamura N,
    7. et al.
    (2019) Long surviving classical Menkes disease treated with weekly intravenous copper therapy. J Trace Elem Med Biol 54, 172–174.
  33. ↵
    1. Overwater IE,
    2. Bindels de Heus K,
    3. Rietman AB,
    4. Ten Hoopen LW,
    5. Vergouwe Y,
    6. Moll HA,
    7. et al.
    (2015) Epilepsy in children with tuberous sclerosis complex: chance of remission and response to antiepileptic drugs. Epilepsia 56, 1239–1245.
  34. ↵
    1. French JA,
    2. Lawson JA,
    3. Yapici Z,
    4. Ikeda H,
    5. Polster T,
    6. Nabbout R,
    7. et al.
    (2016) Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3), a Phase III, randomised, double-blind, placebo-controlled study. Lancet 388, 2153–2163.
  35. ↵
    1. Ceulemans B,
    2. Schoonjans AS,
    3. Marchau F,
    4. Lagae L,
    5. Paelinck BP
    (2016) Five-year extended follow-up status of 10 patients with Dravet syndrome treated with fen?uramine. Epilepsia 57, e129–e134.
  36. ↵
    1. Strehlow V,
    2. Heyne HO,
    3. Vlaskamp DRM,
    4. Marwick KFM,
    5. Rudolf G,
    6. de Bellescize J,
    7. et al.
    (2019) GRIN2A study group, GRIN2A-related disorders: genotype and functional consequence predict phenotype. Brain 142, 80–92.
  37. ↵
    1. Mikati MA,
    2. Jiang YH,
    3. Carboni M,
    4. Shashi V,
    5. Petrovski S,
    6. Spillmann R,
    7. et al.
    (2015) Quinidine in the treatment of KCNT1-positive epilepsies. Ann Neurol 78, 995–999.
  38. ↵
    1. Alberti MJ,
    2. Agustinho A,
    3. Argumedo L,
    4. Armeno M,
    5. Blanco V,
    6. Bouquet C,
    7. et al.
    (2016) Recommendations for the clinical management of children with refractory epilepsy receiving the ketogenic diet. Arch Argent Pediatr 114, 56–63.
  39. ↵
    1. Armeno M,
    2. Araujo C,
    3. Sotomontesano B,
    4. Caraballo RH
    (2018) Update on the adverse effects during therapy with a ketogenic diet in paediatric refractory epilepsy. Rev Neurol 66, 193–200.
  40. ↵
    1. Tang-Wai R,
    2. Mailo J,
    3. Rosenblatt B
    (2017) Breaking the cycle: A comparison between intravenous immunoglobulins and high dosage prednisone in the treatment of medically intractable epilepsy in children. Seizure 47, 34–41.
  41. ↵
    1. o-Espinosa LE,
    2. Rajapakse T,
    3. Rho JM,
    4. Buchhalter J
    (2015) Efficacy of intravenous immunoglobulin in a cohort of children with drug-resistant epilepsy. Pediatr Neurol 52, 509–516.
  42. ↵
    1. Kurian M,
    2. Korff CM
    (2011) Steroids in pediatric epilepsy: infantile spasms and beyond. Epileptologie 28, 15–20.
  43. ↵
    1. Stockings E,
    2. Zagic D,
    3. Campbell G,
    4. Weier M,
    5. Hall WD,
    6. Nielsen S,
    7. et al.
    (2018) Evidence for cannabis and cannabinoids for epilepsy: a systematic review of controlled and observational evidence. J Neurol Neurosurg Psychiatry 89, 741–753.
  44. ↵
    1. Geffrey AL,
    2. Pollack SF,
    3. Bruno PL,
    4. Thiele EA
    (2015) Drug-drug interaction between clobazam and cannabidiol in children with refractory epilepsy. Epilepsia 56, 1246–1251.
  45. ↵
    1. Campbell CT,
    2. Phillips MS,
    3. Manasco K
    (2017) Cannabinoids in pediatrics. J Pediatr Pharmacol Ther 22, 176–185.
  46. ↵
    1. Liu W,
    2. Ge T,
    3. Pan Z,
    4. Leng Y,
    5. Lv J,
    6. Li B
    (2017) The effects of herbal medicine on epilepsy. Oncotarget 8, 48385–48397.
  47. ↵
    1. Bahr TA,
    2. Rodriguez D,
    3. Beaumont C,
    4. Allred K
    (2019) The effects of various essential oils on epilepsy and acute seizure: a systematic review. Evid Based Complement Alternat Med 22, 2019, 6216745.
  48. ↵
    1. Lim LL,
    2. Foldvary N,
    3. Mascha E,
    4. Lee J
    (2001) Acetazolamide in women with catamenial epilepsy. Epilepsia 42, 746–749.
  49. ↵
    1. Fine AL,
    2. Wirrell EC,
    3. Wong-Kisiel LC,
    4. Nickels KC
    (2015) Acetazolamide for electrical status epilepticus in slow-wave sleep. Epilepsia 56, e134–e138.
  50. ↵
    1. West S,
    2. Nolan SJ,
    3. Newton R
    (2016) Surgery for epilepsy: a systematic review of current evidence. Epileptic Disord 18, 113–121.
  51. ↵
    1. Lee AT,
    2. Burke JF,
    3. Chunduru P,
    4. Molinaro AM,
    5. Knowlton R,
    6. Chang EF
    (2019) A historical cohort of temporal lobe surgery for medically refractory epilepsy: a systematic review and meta-analysis to guide future nonrandomized controlled trial studies. J Neurosurg 28, 1–8.
  52. ↵
    1. Yoon Ha Hwang,
    2. Na Young Jung,
    3. Chang Kyu Park,
    4. Won Seok Chang,
    5. Hyun Ho Jung,
    6. Jin Woo Chang
    (2018) Factors Related to the Clinical Outcomes of Surgery for Extra-Temporal Lobe Epilepsy: Long-Term Follow-Up Results. World Neurosurg 115, e645–e649.
  53. ↵
    1. Bartoli A,
    2. El Hassani Y,
    3. Jenny B,
    4. Momjian S,
    5. Korff CM,
    6. Seeck M,
    7. et al.
    (2018) What to do in failed hemispherotomy? Our clinical series and review of the literature. Neurosurg Rev 41, 125–113.
  54. ↵
    1. Eastin TM,
    2. Lopez-Gonzalez MA
    (2017) Stimulation and Neuromodulation in the Treatment of Epilepsy. Brain Sci 8, 2.
  55. ↵
    1. Jamy R,
    2. Kaur M,
    3. Pizarro D,
    4. Toth E,
    5. Pati S
    (2019) Practice trends and the outcome of neuromodulation therapies in epilepsy: A single center study. Epilepsia Open 4, 493–497.
  56. ↵
    1. Purser MF,
    2. Mladsi DM,
    3. Beckman A,
    4. Barion F,
    5. Forsey J
    (2018) Expected budget impact and health outcomes of expanded use of vagus nerve stimulation therapy for drug-resistant epilepsy. Adv Ther 35, 1686–1696.
  57. ↵
    1. Hamilton P,
    2. Soryal I,
    3. Dhahri P,
    4. Wimalachandra W,
    5. Leat A,
    6. Hughes D,
    7. et al.
    (2018) Clinical outcomes of VNS therapy with AspireSR® (including cardiac-based seizure detection) at a large complex epilepsy and surgery centre. Seizure 58, 120–126.
  58. ↵
    1. Kong J,
    2. Fang J,
    3. Park J,
    4. Li S,
    5. Rong P
    (2018) Treating depression with transcutaneous auricular vagus nerve stimulation: state of the art and future perspectives. Front Psychiatry 9, 20.
  59. ↵
    1. Johnson RL,
    2. Wilson CG
    (2018) A review of vagus nerve stimulation as a therapeutic intervention. J Inflamm Res 11, 203–213.
  60. ↵
    1. Bergey GK,
    2. Morrell MJ,
    3. Mizrahi EM,
    4. Goldman A,
    5. King-Stephens D,
    6. Nair D,
    7. et al.
    (2015) Long-term treatment with responsive brain stimulation in adults with refractory partial seizures. Neurology 84, 810–817.
  61. ↵
    1. Salanova V,
    2. Witt T,
    3. Worth R,
    4. Henry TR,
    5. Gross RE,
    6. Nazzaro JM,
    7. et al.
    (2015) Long-term efficacy and safety of thalamic stimulation for drug-resistant partial epilepsy. Neurology 84, 1017–1025.
  62. ↵
    1. Chen R,
    2. Spencer DC,
    3. Weston J,
    4. Nolan SJ
    (2016) Transcranial magnetic stimulation for the treatment of epilepsy. Cochrane Database of Systematic Reviews 8, 1465–1858.
  63. ↵
    1. Shon YM,
    2. Lim SC,
    3. Lim SH
    (2019) Therapeutic effect of repetitive transcranial magnetic stimulation on non-lesional focal refractory epilepsy. J Clin Neurosci 63, 130–133.
  64. ↵
    1. Grewal SS,
    2. Tatum WO
    (2019) Laser thermal ablation in epilepsy. Expert Rev Neurother 12, 1211–1218.
  65. ↵
    1. Grewal SS,
    2. Alvi MA,
    3. Lu VM,
    4. Wahood W,
    5. Worrell GA,
    6. Tatum W,
    7. et al.
    (2019) Magnetic resonance-guided laser interstitial thermal therapy versus stereotactic radiosurgery for medically intractable temporal lobe epilepsy: a systematic review and meta-analysis of seizure outcomes and complications. World Neurosurg 122, e32–e47.
PreviousNext
Back to top

In this issue

Neurosciences Journal: 25 (4)
Neurosciences Journal
Vol. 25, Issue 4
1 Aug 2020
  • Table of Contents
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Neurosciences Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Treating epilepsy with options other than antiepileptic medications
(Your Name) has sent you a message from Neurosciences Journal
(Your Name) thought you would like to see the Neurosciences Journal web site.
Citation Tools
Treating epilepsy with options other than antiepileptic medications
Osama Y. Muthaffar
Neurosciences Journal Aug 2020, 25 (4) 253-261; DOI: 10.17712/nsj.2020.4.20200010

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Treating epilepsy with options other than antiepileptic medications
Osama Y. Muthaffar
Neurosciences Journal Aug 2020, 25 (4) 253-261; DOI: 10.17712/nsj.2020.4.20200010
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Acknowledgment
    • Footnotes
    • References
  • Figures & Data
  • eLetters
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Medication-overuse headache: clinical profile and management strategies
  • The role of exercise in Parkinson’s Disease
  • Review of electroencephalography signals approaches for mental stress assessment
Show more Review

Similar Articles

Navigate

  • home

More Information

  • Help

Additional journals

  • All Topics

Other Services

  • About

© 2025 Neurosciences Journal Neurosciences is copyright under the Berne Convention and the International Copyright Convention. All rights reserved. Neurosciences is an Open Access journal and articles published are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC). Readers may copy, distribute, and display the work for non-commercial purposes with the proper citation of the original work. Electronic ISSN 1658-3183. Print ISSN 1319-6138.

Powered by HighWire