Skip to main content

Main menu

  • Home
  • Content
    • Latest
    • Ahead of print
    • Archive
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Alerts
    • Feedback
    • Folders
    • Help
  • Other Publications
    • Saudi Medical Journal

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Neurosciences Journal
  • Other Publications
    • Saudi Medical Journal
  • My alerts
  • Log in
Neurosciences Journal

Advanced Search

  • Home
  • Content
    • Latest
    • Ahead of print
    • Archive
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Alerts
    • Feedback
    • Folders
    • Help
  • Follow psmmc on Twitter
  • Visit psmmc on Facebook
  • RSS
ReviewReview
Open Access

The role of exercise in Parkinson’s Disease

Mohannad A. Almikhlafi
Neurosciences Journal January 2023, 28 (1) 4-12; DOI: https://doi.org/10.17712/nsj.2023.1.20220105
Mohannad A. Almikhlafi
Department of Pharmacology and Toxicology, Taibah University, Madinah Al-Munawarah, Kingdom of Saudi Arabia
PharmD, PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • eLetters
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Baba M,
    2. Nakajo S,
    3. Tu PH,
    4. Tomita T,
    5. Nakaya K,
    6. Lee VM, et al.
    Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am J Patho 1998; 152: 879-884.
    OpenUrlPubMedWeb of Science
  2. 2.↵
    1. Spillantini MG,
    2. Schmidt ML,
    3. Lee VM,
    4. Trojanowski JQ,
    5. Jakes R,
    6. Goedert M.
    Alpha-synuclein in Lewy bodies. Nature 1997; 388: 839-840.
    OpenUrlCrossRefPubMedWeb of Science
  3. 3.↵
    1. Kuzuhara S,
    2. Mori H,
    3. Izumiyama N,
    4. Yoshimura M,
    5. Ihara Y.
    Lewy bodies are ubiquitinated. A light and electron microscopic immunocytochemical study. Acta Neuropathol 1988; 75: 345-353.
    OpenUrlCrossRefPubMedWeb of Science
  4. 4.↵
    1. Uhl GR,
    2. Walther D,
    3. Mash D,
    4. Faucheux B,
    5. Javoy-Agid F.
    Dopamine transporter messenger RNA in Parkinson’s disease and control substantia nigra neurons. Ann Neurol 1994; 35: 494-498.
    OpenUrlCrossRefPubMedWeb of Science
  5. 5.↵
    1. Marsden CD.
    Neuromelanin and Parkinson’s disease. J Neural Transm Suppl 1983; 19: 121-141.
    OpenUrlPubMed
  6. 6.↵
    1. Caminiti SP,
    2. Presotto L,
    3. Baroncini D,
    4. Garibotto V,
    5. Moresco RM,
    6. Gianolli L, et al.
    Axonal damage and loss of connectivity in nigrostriatal and mesolimbic dopamine pathways in early Parkinson’s disease. Neuroimage Clin 2017; 14: 734-740.
    OpenUrl
  7. 7.↵
    1. Uhl GR,
    2. Hedreen JC,
    3. Price DL.
    Parkinson’s disease: loss of neurons from the ventral tegmental area contralateral to therapeutic surgical lesions. Neurology 1985; 35: 1215-1218.
    OpenUrlCrossRefPubMed
  8. 8.↵
    1. Gibb WR,
    2. Lees AJ.
    Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson’s disease. J Neurol Neurosurg Psychiatry 1991; 54: 388-396.
    OpenUrlAbstract/FREE Full Text
  9. 9.↵
    1. Fearnley JM,
    2. Lees AJ.
    Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 1991; 114: 2283-2301.
    OpenUrlCrossRefPubMedWeb of Science
  10. 10.↵
    1. Calabresi P,
    2. Picconi B,
    3. Tozzi A,
    4. Ghiglieri V,
    5. Di Filippo M.
    Direct and indirect pathways of basal ganglia: a critical reappraisal. Nat Neurosci 2014; 17: 1022-1030.
    OpenUrlCrossRefPubMed
  11. 11.↵
    1. Rai SN,
    2. Singh P,
    3. Varshney R,
    4. Chaturvedi VK,
    5. Vamanu E,
    6. Singh MP, et al.
    Promising drug targets and associated therapeutic interventions in Parkinson’s disease. Neural Regen Res 2021; 16: 1730-1739.
    OpenUrl
  12. 12.↵
    1. Rinne UK.
    Problems associated with long-term levodopa treatment of Parkinson’s disease. Acta Neurol Scand Suppl 1983; 95: 19-26.
    OpenUrlPubMed
  13. 13.↵
    1. Rai SN,
    2. Chaturvedi VK,
    3. Singh P,
    4. Singh BK,
    5. Singh MP.
    Mucuna pruriens in Parkinson’s and in some other diseases: recent advancement and future prospective. 3 Biotech 2020; 10: 522.
    OpenUrl
  14. 14.↵
    1. Okun MS.
    Deep-brain stimulation for Parkinson’s disease. N Engl J Med 2012; 367: 1529-1538.
    OpenUrlCrossRefPubMedWeb of Science
  15. 15.↵
    1. Pavey TG,
    2. Taylor AH,
    3. Fox KR,
    4. Hillsdon M,
    5. Anokye N,
    6. Campbell JL, et al.
    Effect of exercise referral schemes in primary care on physical activity and improving health outcomes: systematic review and meta-analysis. BMJ 2011; 343: d6462.
    OpenUrlAbstract/FREE Full Text
  16. 16.↵
    1. McDonnell MN,
    2. Smith AE,
    3. Mackintosh SF.
    Aerobic exercise to improve cognitive function in adults with neurological disorders: a systematic review. Arch Phys Med Rehabil 2011; 92: 1044-1052.
    OpenUrlCrossRefPubMed
  17. 17.↵
    1. Oliveira de Carvalho A,
    2. Filho ASS,
    3. Murillo-Rodriguez E,
    4. Rocha NB,
    5. Carta MG,
    6. Machado S.
    Physical Exercise For Parkinson’s Disease: Clinical And Experimental Evidence. Clin Pract Epidemiol Ment Health 2018; 14: 89-98.
    OpenUrl
  18. 18.↵
    1. Fisher BE,
    2. Wu AD,
    3. Salem GJ,
    4. Song J,
    5. Lin CH,
    6. Yip J, et al.
    The effect of exercise training in improving motor performance and corticomotor excitability in people with early Parkinson’s disease. Arch Phys Med Rehabil 2008; 89: 12211-12219.
    OpenUrl
  19. 19.↵
    1. Schenkman M,
    2. Hall DA,
    3. Baron AE,
    4. Schwartz RS,
    5. Mettler P,
    6. Kohrt WM.
    Exercise for people in early- or mid-stage Parkinson disease: a 16-month randomized controlled trial. Phys Ther 2012; 92: 1395-1410.
    OpenUrlAbstract/FREE Full Text
  20. 20.↵
    1. Li F,
    2. Harmer P,
    3. Fitzgerald K,
    4. Eckstrom E,
    5. Stock R,
    6. Galver J, et al.
    Tai chi and postural stability in patients with Parkinson’s disease. N Engl J Med 2012; 366: 511-519.
    OpenUrlCrossRefPubMedWeb of Science
  21. 21.↵
    1. Hackney ME,
    2. Earhart GM.
    Effects of dance on balance and gait in severe Parkinson disease: a case study. Disabil Rehabil 2010; 32: 679-684.
    OpenUrlCrossRefPubMed
  22. 22.↵
    1. Hackney ME,
    2. Earhart GM.
    Effects of dance on movement control in Parkinson’s disease: a comparison of Argentine tango and American ballroom. J Rehabil Med 2009; 41: 475-481.
    OpenUrlCrossRefPubMedWeb of Science
  23. 23.↵
    1. Combs SA,
    2. Diehl MD,
    3. Staples WH,
    4. Conn L,
    5. Davis K,
    6. Lewis N, et al.
    Boxing training for patients with Parkinson disease: a case series. Phys Ther 2011; 91: 132-142.
    OpenUrlAbstract/FREE Full Text
  24. 24.↵
    1. Alberts JL,
    2. Linder SM,
    3. Penko AL,
    4. Lowe MJ,
    5. Phillips M.
    It is not about the bike, it is about the pedaling: forced exercise and Parkinson’s disease. Exerc Sport Sci Rev 2011; 39: 177-186.
    OpenUrlPubMed
  25. 25.↵
    1. Ridgel AL,
    2. Vitek JL,
    3. Alberts JL.
    Forced, not voluntary, exercise improves motor function in Parkinson’s disease patients. Neurorehabil Neural Repair 2009; 23: 600-608.
    OpenUrlCrossRefPubMedWeb of Science
  26. 26.↵
    1. Gelb DJ,
    2. Oliver E,
    3. Gilman S.
    Diagnostic criteria for Parkinson disease. Arch Neurol 1999; 56: 33-39.
    OpenUrlCrossRefPubMedWeb of Science
  27. 27.↵
    1. Weintraub D,
    2. Comella CL,
    3. Horn S.
    Parkinson’s disease--Part 1: Pathophysiology, symptoms, burden, diagnosis, and assessment. Am J Manag Care 2008; 14: S40-S48.
    OpenUrlPubMedWeb of Science
  28. 28.↵
    1. Alberts JL,
    2. Rosenfeldt AB.
    The Universal Prescription for Parkinson’s Disease: Exercise. J Parkinsons Dis 2020; 10: S21-S7.
    OpenUrl
  29. 29.↵
    1. Uc EY,
    2. Doerschug KC,
    3. Magnotta V,
    4. Dawson JD,
    5. Thomsen TR,
    6. Kline JN, et al.
    Phase I/II randomized trial of aerobic exercise in Parkinson disease in a community setting. Neurology 2014; 83: 413-425.
    OpenUrlCrossRefPubMed
  30. 30.↵
    1. Ridgel AL,
    2. Ault DL.
    High-Cadence Cycling Promotes Sustained Improvement in Bradykinesia, Rigidity, and Mobility in Individuals with Mild-Moderate Parkinson’s Disease. Parkinsons Dis 2019; 2019: 4076862.
    OpenUrl
  31. 31.↵
    1. Wu PL,
    2. Lee M,
    3. Huang TT.
    Effectiveness of physical activity on patients with depression and Parkinson’s disease: A systematic review. PLoS One 2017; 12: e0181515.
    OpenUrlCrossRefPubMed
  32. 32.↵
    1. Duchesne C,
    2. Gheysen F,
    3. Bore A,
    4. Albouy G,
    5. Nadeau A,
    6. Robillard ME, et al.
    Influence of aerobic exercise training on the neural correlates of motor learning in Parkinson’s disease individuals. Neuroimage Clin 2016; 12: 559-569.
    OpenUrl
  33. 33.↵
    1. Dibble LE,
    2. Hale TF,
    3. Marcus RL,
    4. Droge J,
    5. Gerber JP,
    6. LaStayo PC.
    High-intensity resistance training amplifies muscle hypertrophy and functional gains in persons with Parkinson’s disease. Mov Disord 2006; 21: 1444-1452.
    OpenUrlCrossRefPubMedWeb of Science
  34. 34.↵
    1. Tan AH,
    2. Lim SY,
    3. Lang AE.
    The microbiome-gut-brain axis in Parkinson disease - from basic research to the clinic. Nat Rev Neurol 2022; 18: 476-495.
    OpenUrl
  35. 35.↵
    1. Gubert C,
    2. Kong G,
    3. Renoir T,
    4. Hannan AJ.
    Exercise, diet and stress as modulators of gut microbiota: Implications for neurodegenerative diseases. Neurobiol Dis 2020; 134: 104621.
    OpenUrl
  36. 36.↵
    1. Singh N,
    2. Singh V,
    3. Rai SN,
    4. Mishra V,
    5. Vamanu E,
    6. Singh MP.
    Deciphering the gut microbiome in neurodegenerative diseases and metagenomic approaches for characterization of gut microbes. Biomed Pharmacother 2022; 156: 113958.
    OpenUrl
  37. 37.↵
    1. Kamieniarz A,
    2. Michalska J,
    3. Marszalek W,
    4. Akbas A,
    5. Slomka KJ,
    6. Krzak-Kubica A, et al.
    Transitional Locomotor Tasks in People With Mild to Moderate Parkinson’s Disease. Front Neurol 2020; 11: 405.
    OpenUrl
  38. 38.↵
    1. Hass CJ,
    2. Buckley TA,
    3. Pitsikoulis C,
    4. Barthelemy EJ.
    Progressive resistance training improves gait initiation in individuals with Parkinson’s disease. Gait Posture 2012; 35: 669-673.
    OpenUrlCrossRefPubMedWeb of Science
  39. 39.↵
    1. Frenkel-Toledo S,
    2. Giladi N,
    3. Peretz C,
    4. Herman T,
    5. Gruendlinger L,
    6. Hausdorff JM.
    Treadmill walking as an external pacemaker to improve gait rhythm and stability in Parkinson’s disease. Mov Disord 2005; 20: 1109-1114.
    OpenUrlCrossRefPubMedWeb of Science
  40. 40.↵
    1. Goodwin VA,
    2. Richards SH,
    3. Taylor RS,
    4. Taylor AH,
    5. Campbell JL.
    The effectiveness of exercise interventions for people with Parkinson’s disease: a systematic review and meta-analysis. Mov Disord 2008; 23: 631-640.
    OpenUrlCrossRefPubMedWeb of Science
  41. 41.↵
    1. Rafferty MR,
    2. Prodoehl J,
    3. Robichaud JA,
    4. David FJ,
    5. Poon C,
    6. Goelz LC, et al.
    Effects of 2 Years of Exercise on Gait Impairment in People With Parkinson Disease: The PRET-PD Randomized Trial. J Neurol Phys Ther 2017; 41: 21-30.
    OpenUrl
  42. 42.↵
    1. Allen NE,
    2. Canning CG,
    3. Sherrington C,
    4. Lord SR,
    5. Latt MD,
    6. Close JC, et al.
    The effects of an exercise program on fall risk factors in people with Parkinson’s disease: a randomized controlled trial. Mov Disord 2010; 25: 1217-1225.
    OpenUrlCrossRefPubMed
  43. 43.↵
    1. Shen X,
    2. Wong-Yu IS,
    3. Mak MK.
    Effects of Exercise on Falls, Balance, and Gait Ability in Parkinson’s Disease: A Meta-analysis. Neurorehabil Neural Repair 2016; 30: 512-527.
    OpenUrlCrossRefPubMed
  44. 44.↵
    1. Reuter I,
    2. Mehnert S,
    3. Leone P,
    4. Kaps M,
    5. Oechsner M,
    6. Engelhardt M.
    Effects of a flexibility and relaxation programme, walking, and nordic walking on Parkinson’s disease. J Aging Res 2011; 2011: 232473.
    OpenUrlPubMed
  45. 45.↵
    1. McNeely ME,
    2. Duncan RP,
    3. Earhart GM.
    A comparison of dance interventions in people with Parkinson disease and older adults. Maturitas 2015; 81: 10-16.
    OpenUrl
  46. 46.↵
    1. Earhart GM.
    Dance as therapy for individuals with Parkinson disease. Eur J Phys Rehabil Med 2009; 45: 231-238.
    OpenUrlPubMed
  47. 47.↵
    1. Pereira APS,
    2. Marinho V,
    3. Gupta D,
    4. Magalhaes F,
    5. Ayres C,
    6. Teixeira S.
    Music Therapy and Dance as Gait Rehabilitation in Patients With Parkinson Disease: A Review of Evidence. J Geriatr Psychiatry Neurol 2019; 32: 49-56.
    OpenUrl
  48. 48.↵
    1. Canning CG,
    2. Allen NE,
    3. Nackaerts E,
    4. Paul SS,
    5. Nieuwboer A,
    6. Gilat M.
    Virtual reality in research and rehabilitation of gait and balance in Parkinson disease. Nat Rev Neurol 2020; 16: 409-425.
    OpenUrl
  49. 49.↵
    1. Cano Porras D,
    2. Sharon H,
    3. Inzelberg R,
    4. Ziv-Ner Y,
    5. Zeilig G,
    6. Plotnik M.
    Advanced virtual reality-based rehabilitation of balance and gait in clinical practice. Ther Adv Chronic Dis 2019; 10: 2040622319868379.
    OpenUrl
  50. 50.↵
    1. Cano Porras D,
    2. Siemonsma P,
    3. Inzelberg R,
    4. Zeilig G,
    5. Plotnik M.
    Advantages of virtual reality in the rehabilitation of balance and gait: Systematic review. Neurology 2018; 90: 1017-1025.
    OpenUrlPubMed
  51. 51.↵
    1. Janeh O,
    2. Steinicke F.
    A Review of the Potential of Virtual Walking Techniques for Gait Rehabilitation. Front Hum Neurosci 2021; 15: 717291.
    OpenUrl
  52. 52.↵
    1. Lei C,
    2. Sunzi K,
    3. Dai F,
    4. Liu X,
    5. Wang Y,
    6. Zhang B, et al.
    Effects of virtual reality rehabilitation training on gait and balance in patients with Parkinson’s disease: A systematic review. PLoS One 2019; 14: e0224819.
    OpenUrlCrossRefPubMed
  53. 53.↵
    1. Imbimbo I,
    2. Coraci D,
    3. Santilli C,
    4. Loreti C,
    5. Piccinini G,
    6. Ricciardi D, et al.
    Parkinson’s disease and virtual reality rehabilitation: cognitive reserve influences the walking and balance outcome. Neurological Sciences 2021; 42: 4615-4621.
    OpenUrl
  54. 54.↵
    1. Liao YY,
    2. Yang YR,
    3. Cheng SJ,
    4. Wu YR,
    5. Fuh JL,
    6. Wang RY.
    Virtual Reality-Based Training to Improve Obstacle-Crossing Performance and Dynamic Balance in Patients With Parkinson’s Disease. Neurorehabil Neural Repair 2015; 29: 658-667.
    OpenUrlCrossRefPubMed
  55. 55.↵
    1. Shen X,
    2. Mak MK.
    Balance and Gait Training With Augmented Feedback Improves Balance Confidence in People With Parkinson’s Disease: A Randomized Controlled Trial. Neurorehabil Neural Repair 2014; 28: 524-535.
    OpenUrlCrossRefPubMedWeb of Science
  56. 56.↵
    1. Pompeu JE,
    2. Mendes FA,
    3. Silva KG,
    4. Lobo AM,
    5. Oliveira Tde P,
    6. Zomignani AP, et al.
    Effect of Nintendo Wii-based motor and cognitive training on activities of daily living in patients with Parkinson’s disease: a randomised clinical trial. Physiotherapy 2012; 98: 196-204.
    OpenUrlCrossRefPubMedWeb of Science
  57. 57.↵
    1. Ekman U,
    2. Eriksson J,
    3. Forsgren L,
    4. Mo SJ,
    5. Riklund K,
    6. Nyberg L.
    Functional brain activity and presynaptic dopamine uptake in patients with Parkinson’s disease and mild cognitive impairment: a cross-sectional study. Lancet Neurol 2012; 11: 679-687.
    OpenUrlCrossRefPubMedWeb of Science
  58. 58.↵
    1. Lewis SJ,
    2. Dove A,
    3. Robbins TW,
    4. Barker RA,
    5. Owen AM.
    Cognitive impairments in early Parkinson’s disease are accompanied by reductions in activity in frontostriatal neural circuitry. J Neurosci 2003; 23: 6351-6356.
    OpenUrlAbstract/FREE Full Text
  59. 59.↵
    1. Godefroy O,
    2. Azouvi P,
    3. Robert P,
    4. Roussel M,
    5. LeGall D,
    6. Meulemans T, et al.
    Dysexecutive syndrome: diagnostic criteria and validation study. Ann Neurol 2010; 68: 855-64.
    OpenUrlCrossRefPubMed
  60. 60.↵
    1. Aarsland D,
    2. Larsen JP,
    3. Lim NG,
    4. Janvin C,
    5. Karlsen K,
    6. Tandberg E, et al.
    Range of neuropsychiatric disturbances in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 1999; 67: 492-496.
    OpenUrlAbstract/FREE Full Text
  61. 61.↵
    1. Macht M,
    2. Schwarz R,
    3. Ellgring H.
    Patterns of psychological problems in Parkinson’s disease. Acta Neurol Scand 2005; 111: 95-101.
    OpenUrlCrossRefPubMed
  62. 62.↵
    1. Chaudhuri KR,
    2. Healy DG,
    3. Schapira AH
    , National Institute for Clinical E. Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol 2006; 5: 235-245.
    OpenUrlCrossRefPubMedWeb of Science
  63. 63.↵
    1. Cruise KE,
    2. Bucks RS,
    3. Loftus AM,
    4. Newton RU,
    5. Pegoraro R,
    6. Thomas MG.
    Exercise and Parkinson’s: benefits for cognition and quality of life. Acta Neurol Scand 2011; 123: 13-19.
    OpenUrlCrossRefPubMedWeb of Science
  64. 64.↵
    1. Colcombe SJ,
    2. Erickson KI,
    3. Raz N,
    4. Webb AG,
    5. Cohen NJ,
    6. McAuley E, et al.
    Aerobic fitness reduces brain tissue loss in aging humans. J Gerontol A Biol Sci Med Sci. 2003; 58: 176-180.
    OpenUrlCrossRefPubMedWeb of Science
  65. 65.↵
    1. Alves MLM,
    2. Mesquita BS,
    3. Morais WS,
    4. Leal JC,
    5. Satler CE,
    6. Dos Santos Mendes FA.
    Nintendo Wii Versus Xbox Kinect for Assisting People With Parkinson’s Disease. Percept Mot Skills 2018; 125: 546-565.
    OpenUrl
  66. 66.↵
    1. Maggio MG,
    2. De Cola MC,
    3. Latella D,
    4. Maresca G,
    5. Finocchiaro C,
    6. La Rosa G, et al.
    What About the Role of Virtual Reality in Parkinson Disease’s Cognitive Rehabilitation? Preliminary Findings From a Randomized Clinical Trial. J Geriatr Psychiatry Neurol 2018; 31: 312-318.
    OpenUrlCrossRefPubMed
  67. 67.↵
    1. Gros P,
    2. Videnovic A.
    Sleep and Circadian Rhythm Disorders in Parkinson’s Disease. Curr Sleep Med Rep 2017; 3: 222-234.
    OpenUrl
  68. 68.↵
    1. Ylikoski A,
    2. Martikainen K,
    3. Partinen M.
    Parkinson’s disease and restless legs syndrome. Eur Neurol 2015; 73: 212-219.
    OpenUrl
  69. 69.↵
    1. Kredlow MA,
    2. Capozzoli MC,
    3. Hearon BA,
    4. Calkins AW,
    5. Otto MW.
    The effects of physical activity on sleep: a meta-analytic review. J Behav Med 2015; 38: 427-449.
    OpenUrlCrossRefPubMed
  70. 70.↵
    1. Rao SS,
    2. Hofmann LA,
    3. Shakil A.
    Parkinson’s disease: diagnosis and treatment. Am Fam Physician 2006; 74: 2046-2054.
    OpenUrlPubMedWeb of Science
  71. 71.↵
    1. Reijnders JS,
    2. Ehrt U,
    3. Weber WE,
    4. Aarsland D,
    5. Leentjens AF.
    A systematic review of prevalence studies of depression in Parkinson’s disease. Mov Disord 2008; 23: 183-189; quiz 313.
    OpenUrlCrossRefPubMedWeb of Science
  72. 72.↵
    1. DiLorenzo TM,
    2. Bargman EP,
    3. Stucky-Ropp R,
    4. Brassington GS,
    5. Frensch PA,
    6. LaFontaine T.
    Long-term effects of aerobic exercise on psychological outcomes. Prev Med 1999; 28: 75-85.
    OpenUrlCrossRefPubMedWeb of Science
  73. 73.↵
    1. Dimeo F,
    2. Bauer M,
    3. Varahram I,
    4. Proest G,
    5. Halter U.
    Benefits from aerobic exercise in patients with major depression: a pilot study. Br J Sports Med 2001; 35: 114-7.
    OpenUrlAbstract/FREE Full Text
  74. 74.↵
    1. Guo Y,
    2. Wang Z,
    3. Prathap S,
    4. Holschneider DP.
    Recruitment of prefrontal-striatal circuit in response to skilled motor challenge. Neuroreport 2017; 28: 1187-1194.
    OpenUrl
  75. 75.↵
    1. Lau YS,
    2. Patki G,
    3. Das-Panja K,
    4. Le WD,
    5. Ahmad SO.
    Neuroprotective effects and mechanisms of exercise in a chronic mouse model of Parkinson’s disease with moderate neurodegeneration. Eur J Neurosci 2011; 33: 1264-1274.
    OpenUrlCrossRefPubMed
  76. 76.↵
    1. Squinto SP,
    2. Stitt TN,
    3. Aldrich TH,
    4. Davis S,
    5. Bianco SM,
    6. Radziejewski C, et al.
    trkB encodes a functional receptor for brain-derived neurotrophic factor and neurotrophin-3 but not nerve growth factor. Cell 1991; 65: 885-893.
    OpenUrlCrossRefPubMedWeb of Science
  77. 77.↵
    1. Tuon T,
    2. Souza PS,
    3. Santos MF,
    4. Pereira FT,
    5. Pedroso GS,
    6. Luciano TF, et al.
    Physical Training Regulates Mitochondrial Parameters and Neuroinflammatory Mechanisms in an Experimental Model of Parkinson’s Disease. Oxid Med Cell Longev 2015; 2015: 261809.
    OpenUrl
  78. 78.↵
    1. VanLeeuwen JE,
    2. Petzinger GM,
    3. Walsh JP,
    4. Akopian GK,
    5. Vuckovic M,
    6. Jakowec MW.
    Altered AMPA receptor expression with treadmill exercise in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. J Neurosci Res 2010; 88: 650-668.
    OpenUrlPubMed
  79. 79.↵
    1. Reeve A,
    2. Simcox E,
    3. Turnbull D.
    Ageing and Parkinson’s disease: why is advancing age the biggest risk factor? Ageing Res Rev 2014; 14: 19-30.
    OpenUrlCrossRefPubMedWeb of Science
  80. 80.↵
    1. Erekat N,
    2. Al-Jarrah MD.
    Interleukin-1 Beta and Tumor Necrosis Factor Alpha Upregulation and Nuclear Factor Kappa B Activation in Skeletal Muscle from a Mouse Model of Chronic/Progressive Parkinson Disease. Med Sci Monit 2018; 24: 7524-7531.
    OpenUrl
  81. 81.↵
    1. Nicklas BJ,
    2. Brinkley TE.
    Exercise training as a treatment for chronic inflammation in the elderly. Exerc Sport Sci Rev 2009; 37: 165-170.
    OpenUrlPubMed
  82. 82.↵
    1. Samjoo IA,
    2. Safdar A,
    3. Hamadeh MJ,
    4. Raha S,
    5. Tarnopolsky MA.
    The effect of endurance exercise on both skeletal muscle and systemic oxidative stress in previously sedentary obese men. Nutr Diabetes 2013; 3: e88.
    OpenUrlCrossRefPubMed
  83. 83.↵
    1. Lee JM,
    2. Kim TW,
    3. Park SS,
    4. Han JH,
    5. Shin MS,
    6. Lim BV, et al.
    Treadmill Exercise Improves Motor Function by Suppressing Purkinje Cell Loss in Parkinson Disease Rats. Int Neurourol J 2018; 22: S147-S155.
    OpenUrl
  84. 84.↵
    1. Jang YC,
    2. Hwang DJ,
    3. Koo JH,
    4. Um HS,
    5. Lee NH,
    6. Yeom DC, et al.
    Association of exercise-induced autophagy upregulation and apoptosis suppression with neuroprotection against pharmacologically induced Parkinson’s disease. J Exerc Nutrition Biochem 2018; 22: 1-8.
    OpenUrl
  85. 85.↵
    1. Rai SN,
    2. Tiwari N,
    3. Singh P,
    4. Mishra D,
    5. Singh AK,
    6. Hooshmandi E, et al.
    Therapeutic Potential of Vital Transcription Factors in Alzheimer’s and Parkinson’s Disease With Particular Emphasis on Transcription Factor EB Mediated Autophagy. Front Neurosci 2021; 15: 777347.
    OpenUrl
  86. 86.↵
    1. Rahman S,
    2. Copeland WC.
    POLG-related disorders and their neurological manifestations. Nat Rev Neurol 2019; 15: 40-52.
    OpenUrlCrossRefPubMed
  87. 87.↵
    1. Almikhlafi MA,
    2. Karami MM,
    3. Jana A,
    4. Alqurashi TM,
    5. Majrashi M,
    6. Alghamdi BS, et al.
    Mitochondrial Medicine: A Promising Therapeutic Option Against Various Neurodegenerative Disorders. Curr Neuropharmacol 2022.
  88. 88.↵
    1. Campos JC,
    2. Queliconi BB,
    3. Bozi LHM,
    4. Bechara LRG,
    5. Dourado PMM,
    6. Andres AM, et al.
    Exercise reestablishes autophagic flux and mitochondrial quality control in heart failure. Autophagy 2017; 13: 1304-1317.
    OpenUrlCrossRef
  89. 89.↵
    1. Konopka AR,
    2. Suer MK,
    3. Wolff CA,
    4. Harber MP.
    Markers of human skeletal muscle mitochondrial biogenesis and quality control: effects of age and aerobic exercise training. J Gerontol A Biol Sci Med Sci 2014; 69: 371-378.
    OpenUrlCrossRefPubMedWeb of Science
  90. 90.↵
    1. Safdar A,
    2. Bourgeois JM,
    3. Ogborn DI,
    4. Little JP,
    5. Hettinga BP,
    6. Akhtar M, et al.
    Endurance exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice. Proc Natl Acad Sci U S A 2011; 108: 4135-4140.
    OpenUrlAbstract/FREE Full Text
  91. 91.
    1. Li Y,
    2. Song H,
    3. Shen L,
    4. Wang Y.
    The efficacy and safety of moderate aerobic exercise for patients with Parkinson’s disease: a systematic review and meta-analysis of randomized controlled trials. Ann Palliat Med 2021; 10: 2638-2649.
    OpenUrl
  92. 92.
    1. Shu HF,
    2. Yang T,
    3. Yu SX,
    4. Huang HD,
    5. Jiang LL,
    6. Gu JW, et al.
    Aerobic exercise for Parkinson’s disease: a systematic review and meta-analysis of randomized controlled trials. PLoS One 2014; 9: e100503.
    OpenUrlCrossRefPubMed
  93. 93.
    1. Picelli A,
    2. Varalta V,
    3. Melotti C,
    4. Zatezalo V,
    5. Fonte C,
    6. Amato S, et al.
    Effects of treadmill training on cognitive and motor features of patients with mild to moderate Parkinson’s disease: a pilot, single-blind, randomized controlled trial. Funct Neurol 2016; 31: 25-31.
    OpenUrl
  94. 94.
    1. Mehrholz J,
    2. Kugler J,
    3. Storch A,
    4. Pohl M,
    5. Elsner B,
    6. Hirsch K.
    Treadmill training for patients with Parkinson’s disease. Cochrane Database Syst Rev 2015: CD007830.
  95. 95.
    1. Song R,
    2. Grabowska W,
    3. Park M,
    4. Osypiuk K,
    5. Vergara-Diaz GP,
    6. Bonato P, et al.
    The impact of Tai Chi and Qigong mind-body exercises on motor and non-motor function and quality of life in Parkinson’s disease: A systematic review and meta-analysis. Parkinsonism Relat Disord 2017; 41: 3-13.
    OpenUrlPubMed
  96. 96.
    1. Zhou J,
    2. Yin T,
    3. Gao Q,
    4. Yang XC.
    A Meta-Analysis on the Efficacy of Tai Chi in Patients with Parkinson’s Disease between 2008 and 2014. Evid Based Complement Alternat Med 2015; 2015: 593263.
    OpenUrlPubMed
  97. 97.
    1. Dashtipour K,
    2. Johnson E,
    3. Kani C,
    4. Kani K,
    5. Hadi E,
    6. Ghamsary M, et al.
    Effect of exercise on motor and nonmotor symptoms of Parkinson’s disease. Parkinsons Dis 2015; 2015: 586378.
    OpenUrl
  98. 98.
    1. Ridgel AL,
    2. Kim CH,
    3. Fickes EJ,
    4. Muller MD,
    5. Alberts JL.
    Changes in executive function after acute bouts of passive cycling in Parkinson’s disease. J Aging Phys Act 2011; 19: 87-98.
    OpenUrlPubMed
PreviousNext
Back to top

In this issue

Neurosciences Journal: 28 (1)
Neurosciences Journal
Vol. 28, Issue 1
1 Jan 2023
  • Table of Contents
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Neurosciences Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The role of exercise in Parkinson’s Disease
(Your Name) has sent you a message from Neurosciences Journal
(Your Name) thought you would like to see the Neurosciences Journal web site.
Citation Tools
The role of exercise in Parkinson’s Disease
Mohannad A. Almikhlafi
Neurosciences Journal Jan 2023, 28 (1) 4-12; DOI: 10.17712/nsj.2023.1.20220105

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
The role of exercise in Parkinson’s Disease
Mohannad A. Almikhlafi
Neurosciences Journal Jan 2023, 28 (1) 4-12; DOI: 10.17712/nsj.2023.1.20220105
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • eLetters
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Analysis of IL-4 Levels, IL-1{alpha}, Cortisol Hormone, and Blood Cell Number in Parkinsons Disease Patients Undergoing Dance-based Movement Therapy: A Preliminary Study
  • Google Scholar

More in this TOC Section

  • Medication-overuse headache: clinical profile and management strategies
  • Review of electroencephalography signals approaches for mental stress assessment
Show more Review

Similar Articles

Navigate

  • home

More Information

  • Help

Additional journals

  • All Topics

Other Services

  • About

© 2025 Neurosciences Journal Neurosciences is copyright under the Berne Convention and the International Copyright Convention. All rights reserved. Neurosciences is an Open Access journal and articles published are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC). Readers may copy, distribute, and display the work for non-commercial purposes with the proper citation of the original work. Electronic ISSN 1658-3183. Print ISSN 1319-6138.

Powered by HighWire