Skip to main content

Main menu

  • Home
  • Content
    • Latest
    • Ahead of print
    • Archive
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Alerts
    • Feedback
    • Folders
    • Help
  • Other Publications
    • Saudi Medical Journal

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Neurosciences Journal
  • Other Publications
    • Saudi Medical Journal
  • My alerts
  • Log in
Neurosciences Journal

Advanced Search

  • Home
  • Content
    • Latest
    • Ahead of print
    • Archive
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Alerts
    • Feedback
    • Folders
    • Help
  • Follow psmmc on Twitter
  • Visit psmmc on Facebook
  • RSS
ReviewReview Article
Open Access

The consequences of sleep deprivation on cognitive performance

Mohammad A. Khan and Hamdan Al-Jahdali
Neurosciences Journal April 2023, 28 (2) 91-99; DOI: https://doi.org/10.17712/nsj.2023.2.20220108
Mohammad A. Khan
College of Medicine (Khan, Al-Jahdali), King Saud bin Abdulaziz University for Health Sciences, from King Abdullah International Medical Research Center (Khan, Al-Jahdali), and from Department of Medicine, Pulmonary Division, Ministry of National Guard-Health Affairs (Khan, Al-Jahdali), Riyadh, Kingdom of Saudi Arabia.
MD, MRCP
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hamdan Al-Jahdali
College of Medicine (Khan, Al-Jahdali), King Saud bin Abdulaziz University for Health Sciences, from King Abdullah International Medical Research Center (Khan, Al-Jahdali), and from Department of Medicine, Pulmonary Division, Ministry of National Guard-Health Affairs (Khan, Al-Jahdali), Riyadh, Kingdom of Saudi Arabia.
MD, MRCP
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • eLetters
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Lo JC,
    2. Groeger JA,
    3. Santhi N,
    4. Arbon EL,
    5. Lazar AS,
    6. Hasan S, et al.
    Effects of partial and acute total sleep deprivation on performance across cognitive domains, individuals and circadian phase. PloS one 2012; 7: e45987.
  2. 2.↵
    1. Eugene AR,
    2. Masiak J.
    The Neuroprotective Aspects of Sleep. MEDtube Sci 2015; 3: 35–40.
  3. 3.↵
    1. Dijk DJ,
    2. Archer SN.
    Circadian and Homeostatic Regulation of Human Sleep and Cognitive Performance and Its Modulation by PERIOD3. Sleep Med Clin 2009; 4: 111–125.
  4. 4.↵
    1. Petrides M,
    2. Milner B.
    Deficits on subject-ordered tasks after frontal- and temporal-lobe lesions in man. Neuropsychologia 1982; 20: 249–262.
  5. 5.↵
    1. Yoo SS,
    2. Gujar N,
    3. Hu P,
    4. Jolesz FA,
    5. Walker MP.
    The human emotional brain without sleep--a prefrontal amygdala disconnect. Curr Biol 2007; 17: R877–R878.
  6. 6.↵
    1. Yoo SS,
    2. Hu PT,
    3. Gujar N,
    4. Jolesz FA,
    5. Walker MP.
    A deficit in the ability to form new human memories without sleep. Nat Neurosci 2007; 10: 385–392.
  7. 7.↵
    1. Killgore WD,
    2. Killgore DB,
    3. Day LM,
    4. Li C,
    5. Kamimori GH,
    6. Balkin TJ.
    The effects of 53 hours of sleep deprivation on moral judgment. Sleep 2007; 30: 345–352.
  8. 8.↵
    1. Drummond SP,
    2. Brown GG.
    The effects of total sleep deprivation on cerebral responses to cognitive performance. Neuropsychopharmacology 2001; 25: S68–S73.
  9. 9.↵
    1. Binks PG,
    2. Waters WF,
    3. Hurry M.
    Short-term total sleep deprivations does not selectively impair higher cortical functioning. Sleep 1999; 22: 328–334.
  10. 10.↵
    1. Hernandez PJ,
    2. Abel T.
    A molecular basis for interactions between sleep and memory. Sleep Med Clin 2011; 6: 71–84.
  11. 11.↵
    1. Gais S,
    2. Albouy G,
    3. Boly M,
    4. Dang-Vu TT,
    5. Darsaud A,
    6. Desseilles M, et al.
    Sleep transforms the cerebral trace of declarative memories. Proc Natl Acad Sci U S A 2007; 104: 18778–18783.
  12. 12.↵
    1. Lopez J,
    2. Roffwarg HP,
    3. Dreher A,
    4. Bissette G,
    5. Karolewicz B,
    6. Shaffery JP.
    Rapid eye movement sleep deprivation decreases long-term potentiation stability and affects some glutamatergic signaling proteins during hippocampal development. Neuroscience 2008; 153: 44–53.
  13. 13.↵
    1. Xie M,
    2. Yan J,
    3. He C,
    4. Yang L,
    5. Tan G,
    6. Li C, et al.
    Short-term sleep deprivation impairs spatial working memory and modulates expression levels of ionotropic glutamate receptor subunits in hippocampus. Behav Brain Res 2015; 286: 64–70.
  14. 14.↵
    1. Prince TM,
    2. Abel T.
    The impact of sleep loss on hippocampal function. Learn Mem 2013; 20: 558–569.
  15. 15.↵
    1. Florian C,
    2. Vecsey CG,
    3. Halassa MM,
    4. Haydon PG,
    5. Abel T.
    Astrocyte-derived adenosine and A1 receptor activity contribute to sleep loss-induced deficits in hippocampal synaptic plasticity and memory in mice. J Neurosci 2011; 31: 6956–6962.
  16. 16.↵
    1. Mahboubi S,
    2. Nasehi M,
    3. Imani A,
    4. Sadat-Shirazi M,
    5. Zarrindast M,
    6. Vousooghi N, et al.
    The Effect of REM Sleep Deprivation on mTOR Signaling-Induced by Severe Physical Exercise. Arch Neurosci 2019; 6: e92002.
    OpenUrl
  17. 17.↵
    1. Naidoo N.
    Cellular stress/the unfolded protein response: relevance to sleep and sleep disorders. Sleep Med Rev 2009; 13: 195–204.
  18. 18.↵
    1. Hajnik T,
    2. Tóth A,
    3. Détári L.
    Characteristic changes in the slow cortical waves after a 6-h sleep deprivation in rat. Brain Res 2013; 1501: 1–11.
  19. 19.↵
    1. Haider B,
    2. Duque A,
    3. Hasenstaub AR,
    4. McCormick DA.
    Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. Journal of Neuroscience 2006; 26: 4535–4545.
  20. 20.↵
    1. Pavlopoulos E,
    2. Jones S,
    3. Kosmidis S,
    4. Close M,
    5. Kim C,
    6. Kovalerchik O, et al.
    Molecular mechanism for age-related memory loss: the histone-binding protein RbAp48. Sci Transl Med 2013; 5: 200ra115.
  21. 21.↵
    1. Binder JR,
    2. Frost JA,
    3. Hammeke TA,
    4. Bellgowan PS,
    5. Springer JA,
    6. Kaufman JN, et al.
    Human temporal lobe activation by speech and nonspeech sounds. Cereb Cortex 2000; 10: 512–528.
  22. 22.↵
    1. Aston-Jones G,
    2. Bloom FE.
    Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1981; 1: 876–886.
  23. 23.↵
    1. Araki T,
    2. Kumagai T,
    3. Tanaka K,
    4. Matsubara M,
    5. Kato H,
    6. Itoyama Y, et al.
    Neuroprotective effect of riluzole in MPTP-treated mice. Brain Res 2001; 918: 176–181.
  24. 24.↵
    1. Suntsova N,
    2. Szymusiak R,
    3. Alam MN,
    4. Guzman-Marin R,
    5. McGinty D.
    Sleep-waking discharge patterns of median preoptic nucleus neurons in rats. J Physiol 2002; 543: 665–677.
  25. 25.↵
    1. Cirelli C,
    2. Shaw PJ,
    3. Rechtschaffen A,
    4. Tononi G.
    No evidence of brain cell degeneration after long-term sleep deprivation in rats. Brain Res 1999; 840: 184–193.
  26. 26.↵
    1. Wang Y,
    2. Liu H,
    3. Hitchman G,
    4. Lei X.
    Module number of default mode network: inter-subject variability and effects of sleep deprivation. Brain research 2015; 1596: 69–78.
  27. 27.↵
    1. Kajimura S,
    2. Masuda N,
    3. Lau JKL,
    4. Murayama K.
    Focused attention meditation changes the boundary and configuration of functional networks in the brain. Scientific Reports 2020; 10:18426.
  28. 28.↵
    1. Fox MD,
    2. Raichle ME.
    Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature reviews Neuroscience 2007; 8: 700–711.
  29. 29.↵
    1. Chee MW,
    2. Tan JC,
    3. Parimal S,
    4. Zagorodnov V.
    Sleep deprivation and its effects on object-selective attention. NeuroImage 2010; 49: 1903–1910.
  30. 30.↵
    1. Tomasi D,
    2. Wang RL,
    3. Telang F,
    4. Boronikolas V,
    5. Jayne MC,
    6. Wang GJ, et al.
    Impairment of attentional networks after 1 night of sleep deprivation. Cereb Cortex 2009; 19: 233–240.
  31. 31.↵
    1. Thomas M,
    2. Sing H,
    3. Belenky G,
    4. Holcomb H,
    5. Mayberg H,
    6. Dannals R, et al.
    Neural basis of alertness and cognitive performance impairments during sleepiness. I. Effects of 24 h of sleep deprivation on waking human regional brain activity. J Sleep Res 2000; 9: 335–352.
  32. 32.↵
    1. Kuhn E,
    2. Brodan V,
    3. Brodanová M,
    4. Rysánek K.
    Metabolic reflection of sleep deprivation. Act Nerv Super (Praha) 1969; 11: 165–174.
  33. 33.↵
    1. Vyazovskiy VV,
    2. Olcese U,
    3. Hanlon EC,
    4. Nir Y,
    5. Cirelli C,
    6. Tononi G.
    Local sleep in awake rats. Nature 2011; 472: 443–447.
  34. 34.↵
    1. Timofeev I.
    Neuronal plasticity and thalamocortical sleep and waking oscillations. Prog Brain Res 2011; 193: 121–144.
  35. 35.↵
    1. Brown RE,
    2. Basheer R,
    3. McKenna JT,
    4. Strecker RE,
    5. McCarley RW.
    Control of sleep and wakefulness. Physiol Rev 2012; 92: 1087–1187.
  36. 36.↵
    1. Doran SM,
    2. Van Dongen HP,
    3. Dinges DF.
    Sustained attention performance during sleep deprivation: evidence of state instability. Arch Ital Biol 2001; 139: 253–267.
  37. 37.↵
    1. Rantamäki T,
    2. Kohtala S. Encoding
    , Consolidation, and Renormalization in Depression: Synaptic Homeostasis, Plasticity, and Sleep Integrate Rapid Antidepressant Effects. Pharmacological reviews 2020; 72: 439–465.
  38. 38.↵
    1. Gilestro GF,
    2. Tononi G,
    3. Cirelli C.
    Widespread changes in synaptic markers as a function of sleep and wakefulness in Drosophila. Science 2009; 324: 109–112.
  39. 39.↵
    1. Tononi G,
    2. Cirelli C.
    Sleep and the Price of Plasticity: From Synaptic and Cellular Homeostasis to Memory Consolidation and Integration. Neuron 2014; 81: 12–34.
  40. 40.↵
    Giuditta A. Sleep memory processing: the sequential hypothesis. Frontiers in systems neuroscience 2014; 8: 219.
  41. 41.↵
    1. Tononi G,
    2. Cirelli C.
    Sleep and synaptic down-selection. Eur J Neurosci 2020; 51: 413–421.
  42. 42.↵
    Hanson JA HM. Sleep Deprivation. StatPearls [Internet] Treasure Island (FL): StatPearls Publishing; 2023.
  43. 43.↵
    1. Lanté F,
    2. Toledo-Salas JC,
    3. Ondrejcak T,
    4. Rowan MJ,
    5. Ulrich D.
    Removal of synaptic Ca²+-permeable AMPA receptors during sleep. J Neurosci 2011; 31: 3953–3961.
  44. 44.↵
    1. Olcese U,
    2. Esser SK,
    3. Tononi G.
    Sleep and synaptic renormalization: a computational study. J Neurophysiol 2010; 104: 3476–3493.
  45. 45.↵
    1. Cousins JN,
    2. Sasmita K,
    3. Chee MWL.
    Memory encoding is impaired after multiple nights of partial sleep restriction. Journal of sleep research. 2018;27(1):138–45.
    OpenUrlCrossRef
  46. 46.↵
    1. Voderholzer U,
    2. Piosczyk H,
    3. Holz J,
    4. Landmann N,
    5. Feige B,
    6. Loessl B, et al.
    Sleep restriction over several days does not affect long-term recall of declarative and procedural memories in adolescents. Sleep medicine 2011; 12: 170–178.
  47. 47.↵
    1. Antonenko D,
    2. Diekelmann S,
    3. Olsen C,
    4. Born J,
    5. Mölle M.
    Napping to renew learning capacity: enhanced encoding after stimulation of sleep slow oscillations. Eur J Neurosci 2013; 37: 1142–1151.
  48. 48.↵
    1. Iliff JJ,
    2. Lee H,
    3. Yu M,
    4. Feng T,
    5. Logan J,
    6. Nedergaard M, et al.
    Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest 2013; 123: 1299–309.
  49. 49.↵
    1. Rasmussen MK,
    2. Mestre H,
    3. Nedergaard M.
    The glymphatic pathway in neurological disorders. Lancet Neurol 2018; 17: 1016–1024.
  50. 50.↵
    1. Kim YK,
    2. Nam KI,
    3. Song J.
    The Glymphatic System in Diabetes-Induced Dementia. Front Neurol 2018; 9: 867.
  51. 51.↵
    1. Shokri-Kojori E,
    2. Wang GJ,
    3. Wiers CE,
    4. Demiral SB,
    5. Guo M,
    6. Kim SW, et al.
    β-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc Natl Acad Sci 2018; 115: 4483–4488.
  52. 52.↵
    1. Gunstad J,
    2. Spitznagel MB,
    3. Glickman E,
    4. Alexander T,
    5. Juvancic-Heltzel J,
    6. Walter K, et al.
    beta-Amyloid is associated with reduced cognitive function in healthy older adults. J Neuropsychiatry Clin Neurosci 2008; 20: 327–330.
  53. 53.↵
    1. Melzer TR,
    2. Stark MR,
    3. Keenan RJ,
    4. Myall DJ,
    5. MacAskill MR,
    6. Pitcher TL, et al.
    Beta Amyloid Deposition Is Not Associated With Cognitive Impairment in Parkinson’s Disease. Front Neurol 2019; 10: 391.
  54. 54.↵
    1. Krause AJ,
    2. Ben Simon E,
    3. Mander BA,
    4. Greer SM,
    5. Saletin JM,
    6. Goldstein-Piekarski AN, et al.
    The sleep-deprived human brain. Nat Rev Neurosci. 2017; 18: 404–418.
PreviousNext
Back to top

In this issue

Neurosciences Journal: 28 (2)
Neurosciences Journal
Vol. 28, Issue 2
1 Apr 2023
  • Table of Contents
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Neurosciences Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The consequences of sleep deprivation on cognitive performance
(Your Name) has sent you a message from Neurosciences Journal
(Your Name) thought you would like to see the Neurosciences Journal web site.
Citation Tools
The consequences of sleep deprivation on cognitive performance
Mohammad A. Khan, Hamdan Al-Jahdali
Neurosciences Journal Apr 2023, 28 (2) 91-99; DOI: 10.17712/nsj.2023.2.20220108

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
The consequences of sleep deprivation on cognitive performance
Mohammad A. Khan, Hamdan Al-Jahdali
Neurosciences Journal Apr 2023, 28 (2) 91-99; DOI: 10.17712/nsj.2023.2.20220108
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Acknowledgment
    • Footnotes
    • References
  • Figures & Data
  • eLetters
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Structural and functional changes in the hippocampus induced by environmental exposures
  • Tumefactive demyelinating lesions: A literature review of recent findings
  • Epilepsia partialis continua: A review
Show more Review Article

Similar Articles

Navigate

  • home

More Information

  • Help

Additional journals

  • All Topics

Other Services

  • About

© 2025 Neurosciences Journal Neurosciences is copyright under the Berne Convention and the International Copyright Convention. All rights reserved. Neurosciences is an Open Access journal and articles published are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC). Readers may copy, distribute, and display the work for non-commercial purposes with the proper citation of the original work. Electronic ISSN 1658-3183. Print ISSN 1319-6138.

Powered by HighWire