Skip to main content

Main menu

  • Home
  • Content
    • Latest
    • Ahead of print
    • Archive
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Alerts
    • Feedback
    • Folders
    • Help
  • Other Publications
    • Saudi Medical Journal

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Neurosciences Journal
  • Other Publications
    • Saudi Medical Journal
  • My alerts
  • Log in
Neurosciences Journal

Advanced Search

  • Home
  • Content
    • Latest
    • Ahead of print
    • Archive
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Alerts
    • Feedback
    • Folders
    • Help
  • Follow psmmc on Twitter
  • Visit psmmc on Facebook
  • RSS
Review ArticleReview Article
Open Access

Structural and functional changes in the hippocampus induced by environmental exposures

Emad A. Albadawi
Neurosciences Journal January 2025, 30 (1) 5-19; DOI: https://doi.org/10.17712/nsj.2025.1.20240052
Emad A. Albadawi
From the Department of Basic Medical Sciences, College of Medicine, Taibah University, Madinah, Kingdom of Saudi Arabia
MBBS, MSc, PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Emad A. Albadawi
  • For correspondence: [email protected] [email protected]
  • Article
  • Figures & Data
  • eLetters
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Schröder H,
    2. Moser N,
    3. Huggenberger S
    1. Schröder H,
    2. Moser N,
    3. Huggenberger S.
    The Mouse HC BT - Neuroanatomy of the Mouse: An Introduction. In: Schröder H, Moser N, Huggenberger S, editors. Cham (Germany): Springer International Publishing; 2020. p. 267–88.
  2. 2.↵
    1. Roesler R,
    2. Parent MB,
    3. LaLumiere RT,
    4. McIntyre CK.
    Amygdala-hippocampal interactions in synaptic plasticity and memory formation. Neurobiol Learn Mem [Internet] 2021;184:107490.
    OpenUrl
  3. 3.↵
    1. Banwinkler M,
    2. Theis H,
    3. Prange S,
    4. van Eimeren T.
    Imaging the Limbic System in Parkinson’s Disease—A Review of Limbic Pathology and Clinical Symptoms. Brain Sci 2022; 12: 1248.
    OpenUrlPubMed
  4. 4.↵
    1. Roesler R,
    2. McGaugh JL.
    The Entorhinal Cortex as a Gateway for Amygdala Influences on Memory Consolidation. Neuroscience 2022: 497: 86-96.
    OpenUrlCrossRefPubMed
  5. 5.↵
    1. Nomoto M,
    2. Murayama E,
    3. Ohno S,
    4. Okubo-Suzuki R,
    5. Muramatsu S ichi,
    6. Inokuchi K.
    Hippocampus as a sorter and reverberatory integrator of sensory inputs. Nature Communications 2022; 13: 7413.
    OpenUrlPubMed
  6. 6.↵
    1. Clemente L,
    2. Gasparre D,
    3. Alfeo F,
    4. Battista F,
    5. Abbatantuono C,
    6. Curci A, et al.
    Theory of Mind and Executive Functions in Individuals with Mild Cognitive Impairment or Healthy Aging. Brain Sci 2023;13 :1356.
    OpenUrlPubMed
  7. 7.↵
    1. Lee MT,
    2. Peng WH,
    3. Kan HW,
    4. Wu CC,
    5. Wang DW,
    6. Ho YC.
    Neurobiology of Depression: Chronic Stress Alters the Glutamatergic System in the Brain—Focusing on AMPA Receptor. Biomedicines 2022; 10: 1005.
    OpenUrlPubMed
  8. 8.↵
    1. Rezaei S,
    2. Seyedmirzaei H,
    3. Gharepapagh E,
    4. Mohagheghfard F,
    5. Hasankhani Z,
    6. Karbasi M, et al.
    Effect of spaceflight experience on human brain structure, microstructure, and function: systematic review of neuroimaging studies. Brain Imaging Behav 2024; 10.1007/s11682-024-00894-7.
  9. 9.↵
    1. Sanacora G,
    2. Yan Z,
    3. Popoli M.
    The stressed synapse 2.0: pathophysiological mechanisms in stress-related neuropsychiatric disorders. Nat Rev Neurosci 2022; 23: 86-103.
    OpenUrlCrossRefPubMed
  10. 10.↵
    1. Saeedi M,
    2. Rashidy-Pour A.
    Association between chronic stress and Alzheimer’s disease: Therapeutic effects of Saffron. Biomed Pharmacother 2021; 133: 110995.
    OpenUrlPubMed
  11. 11.↵
    1. Hyer MM,
    2. Shaw GA,
    3. Goswamee P,
    4. Dyer SK,
    5. Burns CM,
    6. Soriano E, et al.
    Chronic adolescent stress causes sustained impairment of cognitive flexibility and hippocampal synaptic strength in female rats. Neurobiol Stress 2021; 14: 100303.
    OpenUrlPubMed
  12. 12.↵
    1. Surget A,
    2. Belzung C.
    Adult hippocampal neurogenesis shapes adaptation and improves stress response: a mechanistic and integrative perspective. Mol Psychiatry 2022; 27: 403-421.
    OpenUrlCrossRefPubMed
  13. 13.↵
    1. Culig L,
    2. Chu X,
    3. Bohr VA.
    Neurogenesis in aging and age-related neurodegenerative diseases. Ageing Res Rev 2022; 78: 101636.
    OpenUrlCrossRefPubMed
  14. 14.↵
    1. Bai X,
    2. Wang B,
    3. Cui Y,
    4. Tian S,
    5. Zhang Y,
    6. You L, et al.
    Hepcidin deficiency impairs hippocampal neurogenesis and mediates brain atrophy and memory decline in mice. J Neuroinflammation 2024; 21: 15.
    OpenUrlPubMed
  15. 15.↵
    1. Knezevic E,
    2. Nenic K,
    3. Milanovic V,
    4. Knezevic NN.
    The Role of Cortisol in Chronic Stress, Neurodegenerative Diseases, and Psychological Disorders. Cells 2023; 12: 2726.
    OpenUrl
  16. 16.↵
    1. Atrooz F,
    2. Alkadhi KA,
    3. Salim S.
    Understanding stress: Insights from rodent models. Curr Res Neurobiol 2021; 2: 100013.
    OpenUrlPubMed
  17. 17.↵
    1. Wang W,
    2. Zhao F,
    3. Ma X,
    4. Perry G,
    5. Zhu X.
    Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: recent advances. Mol Neurodegener 2020; 15: 30.
    OpenUrlCrossRefPubMed
  18. 18.↵
    1. Pechtel P,
    2. Pizzagalli DA.
    Effects of early life stress on cognitive and affective function: an integrated review of human literature. Psychopharmacology (Berl) 2011; 214: 55-70. 10.1007/s00213-010-2009-2.
    OpenUrlCrossRefPubMed
  19. 19.↵
    1. Leschik J,
    2. Lutz B,
    3. Gentile A.
    Stress-related dysfunction of adult hippocampal neurogenesis—an attempt for understanding resilience? Int J Mol Sci 2021; 22: 7339.
    OpenUrlPubMed
  20. 20.↵
    1. Granak S,
    2. Hoschl C,
    3. Ovsepian SV.
    Dendritic spine remodeling and plasticity under general anesthesia. Brain Struct Funct 2021; 226: 2001-2017.
    OpenUrlPubMed
  21. 21.↵
    1. Xing B,
    2. Barbour AJ,
    3. Vithayathil J,
    4. Li X,
    5. Dutko S,
    6. Fawcett-Patel J, et al.
    Reversible synaptic adaptations in a subpopulation of murine hippocampal neurons following early-life seizures. J Clin Invest 2024; 134: e175167.
    OpenUrlPubMed
  22. 22.↵
    1. Franchini L,
    2. Carrano N,
    3. Di Luca M,
    4. Gardoni F.
    Synaptic GluN2A-Containing NMDA Receptors: From Physiology to Pathological Synaptic Plasticity. Int J Mol Sci 2020; 21: 1538.
    OpenUrlPubMed
  23. 23.↵
    1. Dion A,
    2. Muñoz PT,
    3. Franklin TB.
    Epigenetic mechanisms impacted by chronic stress across the rodent lifespan. Neurobiol Stress 2022; 17: 100434.
    OpenUrlPubMed
  24. 24.↵
    1. Catale C,
    2. Gironda S,
    3. Lo Iacono L,
    4. Carola V.
    Microglial Function in the Effects of Early-Life Stress on Brain and Behavioral Development. J Clin Med 2020; 9: 468.
    OpenUrlPubMed
  25. 25.↵
    1. Litwiniuk A,
    2. Bik W,
    3. Kalisz M,
    4. Baranowska-Bik A.
    Inflammasome NLRP3 Potentially Links Obesity-Associated Low-Grade Systemic Inflammation and Insulin Resistance with Alzheimer’s Disease. Anna Litwiniuk 2021; 22(11): 5603.
    OpenUrl
  26. 26.↵
    1. Milligan Armstrong A,
    2. Porter T,
    3. Quek H,
    4. White A,
    5. Haynes J,
    6. Jackaman C, et al.
    Chronic stress and Alzheimer’s disease: the interplay between the hypothalamic–pituitary–adrenal axis, genetics, and microglia. Biol Rev Camb Philos Soc 2021; 96: 2209-2228.
    OpenUrlCrossRef
  27. 27.↵
    1. Zefferino R,
    2. Di Gioia S,
    3. Conese M.
    Molecular links between endocrine, nervous and immune system during chronic stress. Brain Behav 2021; 11: e01960.
    OpenUrlPubMed
  28. 28.↵
    1. Lossi L,
    2. Castagna C,
    3. Merighi A.
    An Overview of the Epigenetic Modifications in the Brain under Normal and Pathological Conditions. Int J Mol Sci 2024; 25: 3881.
    OpenUrlPubMed
  29. 29.↵
    1. Kim EJ,
    2. Kim JJ.
    Neurocognitive effects of stress: a metaparadigm perspective. Mol Psychiatry 2023; 28: 2750-2763.
    OpenUrlCrossRefPubMed
  30. 30.↵
    1. Sanaeifar F,
    2. Pourranjbar S,
    3. Pourranjbar M,
    4. Ramezani S,
    5. Mehr SR,
    6. Wadan AHS, et al.
    Beneficial effects of physical exercise on cognitive-behavioral impairments and brain-derived neurotrophic factor alteration in the limbic system induced by neurodegeneration. Exp Gerontol 2024; 195: 112539.
    OpenUrlPubMed
  31. 31.↵
    1. Hahad O,
    2. Bayo Jimenez MT,
    3. Kuntic M,
    4. Frenis K,
    5. Steven S,
    6. Daiber A, et al.
    Cerebral consequences of environmental noise exposure. Environ Int 2022; 165: 107306.
    OpenUrlCrossRefPubMed
  32. 32.
    1. Lee TH,
    2. Devaki M,
    3. Formolo DA,
    4. Rosa JM,
    5. Cheng ASK,
    6. Yau SY.
    Effects of Voluntary Wheel Running Exercise on Chemotherapy-Impaired Cognitive and Motor Performance in Mice. Int J Environ Res Public Health 2023; 20: 5371.
    OpenUrlPubMed
  33. 33.
    1. Li B,
    2. Mao Q,
    3. Zhao N,
    4. Xia J,
    5. Zhao Y,
    6. Xu B.
    Treadmill exercise overcomes memory deficits related to synaptic plasticity through modulating ionic glutamate receptors. Behav Brain Res 2021; 414: 113502.
    OpenUrlPubMed
  34. 34.
    1. Sun L,
    2. Wang G,
    3. Wu Z,
    4. Xie Y,
    5. Zhou L,
    6. Xiao L, et al.
    Swimming exercise reduces the vulnerability to stress and contributes to the AKT/GSK3β/CRMP2 pathway and microtubule dynamics mediated protective effects on neuroplasticity in male C57BL/6 mice. Pharmacol Biochem Behav 2021; 211: 173285.
    OpenUrlPubMed
  35. 35.
    1. Frodl T,
    2. Strehl K,
    3. Carballedo A,
    4. Tozzi L,
    5. Doyle M,
    6. Amico F, et al.
    Aerobic exercise increases hippocampal subfield volumes in younger adults and prevents volume decline in the elderly. Brain Imaging Behav 2020; 14: 1577-1587.
    OpenUrlPubMed
  36. 36.
    1. Won J,
    2. Callow DD,
    3. Pena GS,
    4. Jordan LS,
    5. Arnold-Nedimala NA,
    6. Nielson KA, et al.
    Hippocampal Functional Connectivity and Memory Performance After Exercise Intervention in Older Adults with Mild Cognitive Impairment. J Alzheimer’s Dis. 2021; 82: 1015-1031.
    OpenUrlPubMed
  37. 37.
    1. Hugues N,
    2. Pellegrino C,
    3. Rivera C,
    4. Berton E,
    5. Pin-Barre C,
    6. Laurin J.
    Is High-Intensity Interval Training Suitable to Promote Neuroplasticity and Cognitive Functions after Stroke? Int J Mol Sci 2021; 22: 3003.
    OpenUrlPubMed
  38. 38.
    1. Wang H,
    2. Xu X,
    3. Xu X,
    4. Gao J,
    5. Zhang T.
    Enriched Environment and Social Isolation Affect Cognition Ability via Altering Excitatory and Inhibitory Synaptic Density in Mice HC. Neurochem Res 2020; 45: 2417-2432.
    OpenUrlCrossRefPubMed
  39. 39.
    1. Khodadadegan MA,
    2. Negah SS,
    3. Saheb M,
    4. Gholami J,
    5. Arabi MH,
    6. Hajali V.
    Combination effect of exercise and environmental enrichment on cognitive functions and hippocampal neurogenesis markers of rat. Neuroreport 2021; 32: 1234-1240.
    OpenUrlPubMed
  40. 40.
    1. Dahan L,
    2. Rampon C,
    3. Florian C.
    Age-related memory decline, dysfunction of the HC and therapeutic opportunities. Prog Neuropsychopharmacol Biol Psychiatry 2020; 102: 109943.
    OpenUrlCrossRefPubMed
  41. 41.
    1. Key MN,
    2. Szabo-Reed AN.
    Impact of Diet and Exercise Interventions on Cognition and Brain Health in Older Adults: A Narrative Review. Nutrients 2023; 15: 2495.
    OpenUrlPubMed
  42. 42.
    1. Arora S,
    2. Santiago JA,
    3. Bernstein M,
    4. Potashkin JA.
    Diet and lifestyle impact the development and progression of Alzheimer’s dementia. Front Nutr 2023; 10: 1213223.
    OpenUrlPubMed
  43. 43.
    1. Molina SJ,
    2. Lietti ÁE,
    3. Carreira Caro CS,
    4. Buján GE,
    5. Guelman LR.
    Effects of early noise exposure on hippocampal-dependent behaviors during adolescence in male rats: influence of different housing conditions. Anim Cogn 2022; 25: 103-120. 10.1007/s10071-021-01540-1.
    OpenUrlCrossRefPubMed
  44. 44.
    1. Duffner LA,
    2. DeJong NR,
    3. Jansen JFA,
    4. Backes WH,
    5. de Vugt M,
    6. Deckers K, et al.
    Associations between social health factors, cognitive activity and neurostructural markers for brain health – A systematic literature review and meta-analysis. Ageing Res Rev 2023; 89: 101986.
    OpenUrlPubMed
  45. 45.
    1. van der Velpen IF,
    2. Melis RJF,
    3. Perry M,
    4. Vernooij-Dassen MJF,
    5. Ikram MA,
    6. Vernooij MW.
    Social Health Is Associated With Structural Brain Changes in Older Adults: The Rotterdam Study. Biol Psychiatry Cogn Neurosci Neuroimaging 2022; 7(7): 659-668.
    OpenUrlPubMed
  46. 46.
    1. Dong TN,
    2. Kramár EA,
    3. Beardwood JH,
    4. Al-Shammari A,
    5. Wood MA,
    6. Keiser AA.
    Temporal endurance of exercise-induced benefits on HC-dependent memory and synaptic plasticity in female mice. Neurobiol Learn Mem 2022; 194: 107658..
    OpenUrlCrossRefPubMed
  47. 47.
    1. Thérond A,
    2. Pezzoli P,
    3. Abbas M,
    4. Howard A,
    5. Bowie CR,
    6. Guimond S.
    The Efficacy of Cognitive Remediation in Depression: A Systematic Literature Review and Meta-Analysis. J Affect Disord 2021; 284: 238-246.
    OpenUrlCrossRefPubMed
  48. 48.
    1. Joss D,
    2. Teicher MH,
    3. Lazar SW.
    Beneficial effects of mindfulness-based intervention on hippocampal volumes and episodic memory for childhood adversity survivors. J Affect Disord Reports 2024; 16: 100769.
    OpenUrl
  49. 49.
    1. Guidotti R,
    2. Del Gratta C,
    3. Perrucci MG,
    4. Romani GL,
    5. Raffone A.
    Neuroplasticity within and between Functional Brain Networks in Mental Training Based on Long-Term Meditation. Brain Sci 2021; 11: 1086.
    OpenUrlPubMed
  50. 50.
    1. Kaliszewska A,
    2. Allison J,
    3. Martini M,
    4. Arias N.
    Improving Age-Related Cognitive Decline through Dietary Interventions Targeting Mitochondrial Dysfunction. Int J Mol Sci 2021; 22: 3574.
    OpenUrlCrossRefPubMed
  51. 51.
    1. Fadó R,
    2. Molins A,
    3. Rojas R,
    4. Casals N.
    Feeding the Brain: Effect of Nutrients on Cognition, Synaptic Function, and AMPA Receptors. Nutrients 2022; 14: 4137.
    OpenUrlPubMed
  52. 52.
    1. Ghaddar B,
    2. Veeren B,
    3. Rondeau P,
    4. Bringart M,
    5. Lefebvre d’Hellencourt C,
    6. Meilhac O, et al.
    Impaired brain homeostasis and neurogenesis in diet-induced overweight zebrafish: a preventive role from A. borbonica extract. Sci Rep 2020; 10: 14496. 10.1038/s41598-020-71402-2.
    OpenUrlCrossRefPubMed
  53. 53.
    1. Semenov DG,
    2. Belyakov A V.
    BDNF and Senile Cognitive Decline. Neurosci Behav Physiol 2022; 52: 287-296.
    OpenUrl
  54. 54.
    1. Numakawa T,
    2. Odaka H.
    The Role of Neurotrophin Signaling in Age-Related Cognitive Decline and Cognitive Diseases. Int J Mol Sci 2022; 23: 7726.
    OpenUrlPubMed
  55. 55.
    1. Gisabella B,
    2. Babu J,
    3. Valeri J,
    4. Rexrode L,
    5. Pantazopoulos H.
    Sleep and memory consolidation dysfunction in psychiatric disorders: evidence for the involvement of extracellular matrix molecules. Front Neurosci 2021; 15: 646678.
    OpenUrlPubMed
  56. 56.↵
    1. Yan YD,
    2. Chen YQ,
    3. Wang CY,
    4. Ye CB,
    5. Hu ZZ,
    6. Behnisch T, et al.
    Chronic modafinil therapy ameliorates depressive-like behavior, spatial memory and hippocampal plasticity impairments, and sleep-wake changes in a surgical mouse model of menopause. Transl Psychiatry 2021; 11: 116.
    OpenUrlPubMed
  57. 57.↵
    1. Sinnott JD,
    2. Rabin JS
    1. Rabin JS.
    Behavioral Epigenetics: The Underpinnings of Political Psychology BT - The Psychology of Political Behavior in a Time of Change. In: Sinnott JD, Rabin JS, editors. Cham (Germany): Springer International Publishing; 2021. p. 55–96.
  58. 58.↵
    1. Marzola P,
    2. Melzer T,
    3. Pavesi E,
    4. Gil-Mohapel J,
    5. Brocardo PS.
    Exploring the Role of Neuroplasticity in Development, Aging, and Neurodegeneration. Brain Sci 2023; 13: 1610.
    OpenUrlPubMed
  59. 59.↵
    1. Nabi M,
    2. Tabassum N.
    Role of Environmental Toxicants on Neurodegenerative Disorders. Front Toxicol 2022: 4: 837579.
    OpenUrlPubMed
  60. 60.↵
    1. Desai RI,
    2. Limoli CL,
    3. Stark CEL,
    4. Stark SM.
    Impact of spaceflight stressors on behavior and cognition: A molecular, neurochemical, and neurobiological perspective. Neurosci Biobehav Rev 2022; 138: 104676.
    OpenUrlPubMed
  61. 61.↵
    1. Stahn AC,
    2. Kühn S.
    Brains in space: the importance of understanding the impact of long-duration spaceflight on spatial cognition and its neural circuitry. Cogn Process 2021; 22: 105-114.
    OpenUrl
  62. 62.↵
    1. Rocha M,
    2. Wang D,
    3. Avila-Quintero V,
    4. Bloch MH,
    5. Kaffman A.
    Deficits in hippocampal-dependent memory across different rodent models of early life stress: systematic review and meta-analysis. Transl Psychiatry 2021; 11: 231.
    OpenUrlPubMed
  63. 63.↵
    1. Krukowski K,
    2. Grue K,
    3. Becker M,
    4. Elizarraras E,
    5. Frias ES,
    6. Halvorsen A, et al.
    The impact of deep space radiation on cognitive performance: From biological sex to biomarkers to countermeasures. Sci Adv 2024; 7: eabg6702.
    OpenUrl
  64. 64.↵
    1. Julian JB,
    2. Doeller CF.
    Remapping and realignment in the human hippocampal formation predict context-dependent spatial behavior. Nat Neurosci 2021; 24: 863-872.
    OpenUrlCrossRefPubMed
  65. 65.↵
    1. Ahmed SS,
    2. Goswami N,
    3. Sirek A,
    4. Green DA,
    5. Winnard A,
    6. Fiebig L, et al.
    Systematic review of the effectiveness of standalone passive countermeasures on microgravity-induced physiologic deconditioning. npj Microgravity 2024; 10: 48.
    OpenUrlPubMed
  66. 66.↵
    1. Turksen K
    1. Navarro-Tableros V,
    2. Gomez Y,
    3. Brizzi MF,
    4. Camussi G.
    Generation of Human Stem Cell-Derived Pancreatic Organoids (POs) for Regenerative Medicine BT - Cell Biology and Translational Medicine, Volume 6: Stem Cells: Their Heterogeneity, Niche and Regenerative Potential. In: Turksen K, editor. Cham (Germany): Springer International Publishing; 2020. p. 179-220.
    OpenUrl
  67. 67.↵
    1. Ferranti F,
    2. Del Bianco M,
    3. Pacelli C.
    Advantages and Limitations of Current Microgravity Platforms for Space Biology Research. Appl Sci 2021; 11: 68.
    OpenUrl
  68. 68.↵
    1. Fernandez LMJ,
    2. Lüthi A.
    Sleep Spindles: Mechanisms and Functions. Physiol Rev 2020; 100: 805-868.
    OpenUrlCrossRefPubMed
  69. 69.↵
    1. Kim T,
    2. Kim S,
    3. Kang J,
    4. Kwon M,
    5. Lee SH.
    The Common Effects of Sleep Deprivation on Human Long-Term Memory and Cognitive Control Processes. Front Neurosci 2022; 16: 883848.
    OpenUrlPubMed
  70. 70.↵
    1. Chen P,
    2. Ban W,
    3. Wang W,
    4. You Y,
    5. Yang Z.
    The Devastating Effects of Sleep Deprivation on Memory: Lessons from Rodent Models. Clocks Sleep 2023; 5: 276-294.
    OpenUrlCrossRefPubMed
  71. 71.↵
    1. Schneider F,
    2. Horowitz A,
    3. Lesch KP,
    4. Dandekar T.
    Delaying memory decline: different options and emerging solutions. Transl Psychiatry 2020; 10: 13.
    OpenUrlPubMed
  72. 72.↵
    1. Sharma P,
    2. Tulsawani R.
    Ganoderma lucidum aqueous extract prevents hypobaric hypoxia induced memory deficit by modulating neurotransmission, neuroplasticity and maintaining redox homeostasis. Sci Rep 2020; 10: 8944.
    OpenUrlPubMed
  73. 73.↵
    1. Li X,
    2. Wang J.
    Abnormal neural activities in adults and youths with major depressive disorder during emotional processing: a meta-analysis. Brain Imaging Behav 2021; 15: 1134-1154.
    OpenUrlPubMed
  74. 74.↵
    1. Kuijer EJ,
    2. Steenbergen L.
    The microbiota-gut-brain axis in HC-dependent learning and memory: current state and future challenges. Neurosci Biobehav Rev 2023; 152: 105296.
    OpenUrlCrossRefPubMed
  75. 75.↵
    1. Bolsius YG,
    2. Zurbriggen MD,
    3. Kim JK,
    4. Kas MJ,
    5. Meerlo P,
    6. Aton SJ, et al.
    The role of clock genes in sleep, stress and memory. Biochem Pharmacol 2021; 191: 114493.
    OpenUrlPubMed
  76. 76.↵
    1. von Gall C.
    The Effects of Light and the Circadian System on Rhythmic Brain Function. Int J Mol Sci 2022; 23: 2778.
    OpenUrlPubMed
  77. 77.↵
    1. Segi-Nishida E,
    2. Suzuki K.
    Regulation of adult-born and mature neurons in stress response and antidepressant action in the dentate gyrus of the the hippocampus. Neurosci Res 2022; S0168-0102: 00233-00234.
    OpenUrl
  78. 78.
    1. Gupta S,
    2. Guleria RS.
    Involvement of Nuclear Factor-κB in Inflammation and Neuronal Plasticity Associated with Post-Traumatic Stress Disorder. Cells 2022; 11: 2034.
    OpenUrl
  79. 79.↵
    1. Komoltsev IG,
    2. Gulyaeva NV.
    Brain Trauma, Glucocorticoids and Neuroinflammation: Dangerous Liaisons for the Hippocampus. Biomedicines 2022; 10: 1139.
    OpenUrlPubMed
  80. 80.↵
    1. Murawska-Ciałowicz E,
    2. Wiatr M,
    3. Ciałowicz M,
    4. Gomes de Assis G,
    5. Borowicz W,
    6. Rocha-Rodrigues S, et al.
    BDNF Impact on Biological Markers of Depression—Role of Physical Exercise and Training. Int J Environ Res Public Health 2021;18:7553.
    OpenUrlPubMed
  81. 81.↵
    1. Correia AS,
    2. Cardoso A,
    3. Vale N.
    BDNF Unveiled: Exploring Its Role in Major Depression Disorder Serotonergic Imbalance and Associated Stress Conditions. Pharmaceutics 2023; 15: 2081.
    OpenUrlPubMed
  82. 82.↵
    1. Rana T,
    2. Behl T,
    3. Sehgal A,
    4. Srivastava P,
    5. Bungau S.
    Unfolding the Role of BDNF as a Biomarker for Treatment of Depression. J Mol Neurosci 2021; 71: 2008-2021.
    OpenUrlPubMed
  83. 83.↵
    1. Yang T,
    2. Nie Z,
    3. Shu H,
    4. Kuang Y,
    5. Chen X,
    6. Cheng J, et al.
    The Role of BDNF on Neural Plasticity in Depression. Front Cell Neurosci 2020; 14: 82.
    OpenUrlCrossRefPubMed
  84. 84.↵
    1. De Assis GG,
    2. Murawska-Ciałowicz E.
    BDNF Modulation by microRNAs: An Update on the Experimental Evidence. Cells 2024; 13: 880.
    OpenUrl
  85. 85.↵
    1. Colucci-D’Amato L,
    2. Speranza L,
    3. Volpicelli F.
    Neurotrophic Factor BDNF, Physiological Functions and Therapeutic Potential in Depression, Neurodegeneration and Brain Cancer. Int J Mol Sci 2020; 21: 7777.
    OpenUrlCrossRefPubMed
  86. 86.↵
    1. Liu Q,
    2. Huang Y,
    3. Duan M,
    4. Yang Q,
    5. Ren B,
    6. Tang F.
    Microglia as Therapeutic Target for Radiation-Induced Brain Injury. Int J Mol Sci 2022; 23: 8286.
    OpenUrlPubMed
  87. 87.↵
    1. El-Missiry MA,
    2. Shabana S,
    3. Ghazala SJ,
    4. Othman AI,
    5. Amer ME.
    Melatonin exerts a neuroprotective effect against γ-radiation-induced brain injury in the rat through the modulation of neurotransmitters, inflammatory cytokines, oxidative stress, and apoptosis. Environ Sci Pollut Res Int 2021; 28: 31108-31121.
    OpenUrl
  88. 88.↵
    1. Saw G,
    2. Tang FR.
    Epigenetic regulation of the HC, with special reference to radiation exposure. Int J Mol Sci 2020; 21: 9514.
    OpenUrlPubMed
  89. 89.↵
    1. Gulyaeva NV.
    Glucocorticoid Regulation of the GlutamatergicSynapse: Mechanisms of Stress-Dependent Neuroplasticity. J Evol Biochem Physiol 2021; 57: 564-576.
    OpenUrl
  90. 90.
    1. Sakimoto Y,
    2. Oo PM,
    3. Goshima M,
    4. Kanehisa I,
    5. Tsukada Y,
    6. Mitsushima D.
    Significance of GABAA Receptor for Cognitive Function and Hippocampal Pathology. Int J Mol Sci 2021; 22: 12456.
    OpenUrlPubMed
  91. 91.↵
    1. Sbrini G,
    2. Brivio P,
    3. Bosch K,
    4. Homberg JR,
    5. Calabrese F.
    Enrichment Environment Positively Influences Depression- and Anxiety-Like Behavior in Serotonin Transporter Knockout Rats through the Modulation of Neuroplasticity, Spine, and GABAergic Markers. Genes (Basel) 2020; 11: 1248.
    OpenUrlPubMed
PreviousNext
Back to top

In this issue

Neurosciences Journal: 30 (1)
Neurosciences Journal
Vol. 30, Issue 1
1 Jan 2025
  • Table of Contents
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Neurosciences Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Structural and functional changes in the hippocampus induced by environmental exposures
(Your Name) has sent you a message from Neurosciences Journal
(Your Name) thought you would like to see the Neurosciences Journal web site.
Citation Tools
Structural and functional changes in the hippocampus induced by environmental exposures
Emad A. Albadawi
Neurosciences Journal Jan 2025, 30 (1) 5-19; DOI: 10.17712/nsj.2025.1.20240052

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Structural and functional changes in the hippocampus induced by environmental exposures
Emad A. Albadawi
Neurosciences Journal Jan 2025, 30 (1) 5-19; DOI: 10.17712/nsj.2025.1.20240052
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • ABSTRACT
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • eLetters
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Tumefactive demyelinating lesions: A literature review of recent findings
  • Epilepsia partialis continua: A review
Show more Review Article

Similar Articles

Navigate

  • home

More Information

  • Help

Additional journals

  • All Topics

Other Services

  • About

© 2025 Neurosciences Journal Neurosciences is copyright under the Berne Convention and the International Copyright Convention. All rights reserved. Neurosciences is an Open Access journal and articles published are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC). Readers may copy, distribute, and display the work for non-commercial purposes with the proper citation of the original work. Electronic ISSN 1658-3183. Print ISSN 1319-6138.

Powered by HighWire