Skip to main content

Main menu

  • Home
  • Content
    • Latest
    • Ahead of print
    • Archive
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Alerts
    • Feedback
    • Folders
    • Help
  • Other Publications
    • Saudi Medical Journal

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Neurosciences Journal
  • Other Publications
    • Saudi Medical Journal
  • My alerts
  • Log in
Neurosciences Journal

Advanced Search

  • Home
  • Content
    • Latest
    • Ahead of print
    • Archive
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Alerts
    • Feedback
    • Folders
    • Help
  • Follow psmmc on Twitter
  • Visit psmmc on Facebook
  • RSS
Review ArticleReview Article
Open Access

Neuronal network models of epileptogenesis

Aminu T. Abdullahi and Lawan H. Adamu
Neurosciences Journal April 2017, 22 (2) 85-93; DOI: https://doi.org/10.17712/nsj.2017.2.20160455
Aminu T. Abdullahi
From the Department of Psychiatry (Abdullahi), Aminu Kano Teaching Hospital, Department of Anatomy (Adamu), Faculty of Basic Medical Sciences, Bayero University, Kano, Nigeria
MBBS, Msc
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lawan H. Adamu
From the Department of Psychiatry (Abdullahi), Aminu Kano Teaching Hospital, Department of Anatomy (Adamu), Faculty of Basic Medical Sciences, Bayero University, Kano, Nigeria
BSc. MSc
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • eLetters
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. ↵
    1. Fisher RS,
    2. Acevedo C,
    3. Arzimanoglou A,
    4. Bogacz A,
    5. Cross JH,
    6. Elger CE,
    7. et al.
    (2014) ILAE official report:a practical clinical definition of epilepsy. Epilepsia 55, 475–482.
  2. ↵
    1. Ngugi AK,
    2. Bottomley C,
    3. Kleinschmidt I,
    4. Sander JW,
    5. Newton CR
    (2010) Estimation of the burden of active and life-time epilepsy:a meta-analytic approach. Epilepsia 51, 883–890.
  3. ↵
    1. Karakis I,
    2. Montouris GD,
    3. Piperidou C,
    4. Luciano MS,
    5. Meador KJ,
    6. Cole AJ
    (2013) The effect of epilepsy surgery on caregiver quality of life. Epilepsy Res 107, 181–189.
  4. ↵
    1. Pitkänen A
    (2010) Therapeutic approaches to epileptogenesis - hope on the horizon. Epilepsia 51, 2–17.
  5. ↵
    1. Pitkänen A,
    2. Lukasiuk K
    (2011) Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol 10, 173–186.
  6. ↵
    1. Van Diessen E,
    2. Diederen SJ,
    3. Braun KP,
    4. Jansen FE,
    5. Stam CJ
    (2013) Functional and structural brain networks in epilepsy:what have we learned? Epilepsia 54, 1855–1865.
  7. ↵
    1. Laufs H
    (2012) Functional imaging of seizures and epilepsy:evolution from zones to networks. Curr Opin Neurol 25, 194–200.
  8. ↵
    1. Mesulam M
    (2009) Defining neurocognitive networks in the bold new world of computed connectivity. Neuron 62, 1–3.
  9. ↵
    1. Stefan H,
    2. Lopes Da Silva FH
    (2013) Epileptic neuronal networks:methods of identification and clinical relevance. Frontiers Neurol, 4.
  10. ↵
    1. Power JD,
    2. Schlaggar BL,
    3. Lessov-Schlaggar CN,
    4. Petersen SE
    (2013) Evidence for hubs in human functional brain networks. Neuron 79, 798–813.
  11. ↵
    1. Stam CJ,
    2. Van Straaten EC
    (2012) The organization of physiological brain networks. Clin Neurophysiol 123, 1067–1087.
  12. ↵
    1. Kramer MA,
    2. Cash SS
    (2012) Epilepsy as a disorder of cortical network organization. Neuroscientist 18, 360–372.
  13. ↵
    1. Sporns O
    (2013) Structure and function of complex brain networks. Dialogues Clin Neurosci 15, 247–262.
  14. ↵
    1. Bernhardt BC,
    2. Bonilha L,
    3. Gross DW
    (2015) Network analysis for a network disorder:The emerging role of graph theory in the study of epilepsy. Epilepsy & Behavior 50, 162–170.
  15. ↵
    1. Tijms BM,
    2. Wink AM,
    3. de Haan W,
    4. van der Flier WM,
    5. Stam CJ,
    6. Scheltens P,
    7. et al.
    (2013) Alzheimer’s disease:connecting findings from graph theoretical studies of brain networks. Neurobiol Aging 34, 2023–2036.
  16. ↵
    1. Zuo XN,
    2. Ehmke R,
    3. Mennes M,
    4. Imperati D,
    5. Castellanos FX,
    6. Sporns O,
    7. et al.
    (2012) Network centrality in the human functional connectome. Cereb Cortex 22, 1862–1875.
  17. ↵
    1. Chavez M,
    2. Valencia M,
    3. Navarro V,
    4. Latora V,
    5. Martinerie J
    (2010) Functional modularity of background activities in normal and epileptic brain networks. Phys Rev Lett 104, 118701.
  18. ↵
    1. Liao W,
    2. Zhang Z,
    3. Pan Z,
    4. Mantini D,
    5. Ding J,
    6. Duan X,
    7. et al.
    (2010) Altered functional connectivity and small-world in mesial temporal lobe epilepsy. PLoS One 5, e8525.
  19. ↵
    1. Horstmann MT,
    2. Bialonski S,
    3. Noennig N,
    4. Mai H,
    5. Prusseit J,
    6. Wellmer J,
    7. et al.
    (2010) State dependent properties of epileptic brain networks:comparative graph-theoretical analyses of simultaneously recorded EEG and MEG. Clin Neurophysiol 121, 172–185.
  20. ↵
    1. Bernhardt BC,
    2. Chen Z,
    3. He Y,
    4. Evans AC,
    5. Bernasconi N
    (2011) Graph-theoretical analysis reveals disrupted small-world organization of cortical thickness correlation networks in temporal lobe epilepsy. Cereb Cortex 21, 2147–2157.
  21. ↵
    1. Vaessen MJ,
    2. Jansen JF,
    3. Vlooswijk MC,
    4. Hofman PA,
    5. Majoie HJ,
    6. Aldenkamp AP,
    7. et al.
    (2012) White matter network abnormalities are associated with cognitive decline in chronic epilepsy. Cereb Cortex 22, 2139–2147.
  22. ↵
    1. Vecchio F,
    2. Miraglia F,
    3. Curcio G,
    4. Marca GD,
    5. Vollono C,
    6. Mazzucchi E,
    7. et al.
    (2015) Cortical connectivity in fronto-temporal focal epilepsy from EEG analysis:A study via graph theory. Clin Neurophysiol 126, 1108–1116.
  23. ↵
    1. Stam CJ,
    2. de Haan W,
    3. Daffertshofer A,
    4. Jones BF,
    5. Manshanden I,
    6. van Cappellen van Walsum AM,
    7. et al.
    (2009) Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease. Brain 132, 213–224.
  24. ↵
    1. Friston KJ,
    2. Bastos A,
    3. Litvak V,
    4. Stephan EK,
    5. Fries P,
    6. Moran RJ
    (2012) DCM for complex-valued data:cross-spectra, coherence and phase-delays. Neuroimage 59, 439–455.
    1. Moran RJ,
    2. Stephan KE,
    3. Dolan RJ,
    4. Friston KJ
    (2011) Consistent spectral predictors for dynamic causal models of steady-state responses. Neuroimage 55, 1694–1708.
  25. ↵
    1. Daunizeau J,
    2. David O,
    3. Stephan KE
    (2011) Dynamic causal modelling:a critical review of the biophysical and statistical foundations. Neuroimage 58, 312–322.
  26. ↵
    1. Cooray GK,
    2. Sengupta B,
    3. Douglas PK,
    4. Friston K
    (2016) Dynamic causal modelling of electrographic seizure activity using Bayesian belief updating. Neuroimage 125, 1142–1154.
  27. ↵
    1. Szaflarski JP,
    2. DiFrancesco M,
    3. Hirschauer T,
    4. Banks C,
    5. Privitera MD,
    6. Gotman J,
    7. Holland SK
    (2010) Cortical and subcortical contributions to absence seizure onset examined with EEG/fMRI. Epilepsy Behav 18, 404–413.
  28. ↵
    1. Tyvaert L,
    2. LeVan P,
    3. Dubeau F,
    4. Gotman J
    (2009) Noninvasive dynamic imaging of seizures in epileptic patients. Hum Brain Mapp 30, 3993–4011.
  29. ↵
    1. Murta T,
    2. Leal A,
    3. Garrido MI,
    4. Figueiredo P
    (2012) Dynamic causal modelling of epileptic seizure propagation pathways:a combined EEG–fMRI study. Neuroimage 62, 1634–1642.
  30. ↵
    1. Stephan KE,
    2. Penny WD,
    3. Moran RJ,
    4. den Ouden HE,
    5. Daunizeau J,
    6. Friston KJ
    (2010) Ten simple rules for dynamic causal modeling. Neuroimage 49, 3099–3109.
  31. ↵
    1. Carmichael DW,
    2. Thornton JS,
    3. Rodionov R,
    4. Thornton R,
    5. McEvoy AW,
    6. Ordidge RJ,
    7. et al.
    (2010) Feasibility of simultaneous intracranial EEG–fMRI in humans:a safety study. Neuroimage 49, 379–390.
  32. ↵
    1. Vulliemoz S,
    2. Carmichael DW,
    3. Rosenkranz K,
    4. Diehl B,
    5. Rodionov R,
    6. Walker MC,
    7. et al.
    (2011) Simultaneous intracranial EEG and fMRI of interictal epileptic discharges in humans. Neuroimage 54, 182–190.
  33. ↵
    1. Richardson MP
    (2012) Large scale brain models of epilepsy:dynamics meets connectomics. J Neurol Neurosurg Psych 83, 1238–1248.
    1. Seghier ML,
    2. Friston KJ
    (2013) Network discovery with large DCMs. Neuroimage 68, 181–191.
    1. Vaudano AE,
    2. Avanzini P,
    3. Tassi L,
    4. Ruggieri A,
    5. Cantalupo G,
    6. Benuzzi F,
    7. et al.
    (2013) Causality within the Epileptic Network:An EEG-fMRI Study Validated by Intracranial EEG. Front Neurol 4, 185.
  34. ↵
    1. Beenhakker MP,
    2. Huguenard JR
    (2009) Neurons that fire together also conspire together:is normal sleep circuitry hijacked to generate epilepsy? Neuron 62, 612–632.
  35. ↵
    1. Avanzini G,
    2. Manganotti P,
    3. Meletti S,
    4. Moshé SL,
    5. Panzica F,
    6. Wolf P,
    7. et al.
    (2012) The system epilepsies:a pathophysiological hypothesis. Epilepsia 53, 771–778.
  36. ↵
    1. Xue K,
    2. Luo C,
    3. Zhang D,
    4. Yang T,
    5. Li J,
    6. Gong D,
    7. et al.
    (2014) Diffusion tensor tractography reveals disrupted structural connectivity in childhood absence epilepsy. Epilepsy Res 108, 125–138.
  37. ↵
    1. Chen PC,
    2. Castillo EM,
    3. Baumgartner J,
    4. Seo JH,
    5. Korostenskaja M,
    6. Lee KH
    (2006) Identification of focal epileptogenic networks in generalized epilepsy using brain functional connectivity analysis of bilateral intracranial EEG signals. Brain Topogr 29, 728–737.
  38. ↵
    1. Wei H,
    2. An J,
    3. Shen H,
    4. Zeng LL,
    5. Qiu S,
    6. Hu D
    (2016) Altered effective connectivity among core neurocognitive networks in idiopathic generalized epilepsy:an fMRI evidence. Front Hum Neurosci 10, 447.
  39. ↵
    1. Kay B,
    2. Szaflarski JP
    (2014) EEG/fMRI contributions to our understanding of genetic generalized epilepsies. Epilepsy Behav 34, 129–135.
  40. ↵
    1. Benuzzi F,
    2. Mirandola L,
    3. Pugnaghi M,
    4. Farinelli V,
    5. Tassinari CA,
    6. Capovilla G,
    7. et al.
    (2012) Epilepsia 53, 622–630.
  41. ↵
    1. Seneviratne U,
    2. Cook M,
    3. D’souza W
    (2014) Focal abnormalities in idiopathic generalized epilepsy:a critical review of the literature. Epilepsia 55, 1157–1169.
  42. ↵
    1. Elshahabi A,
    2. Klamer S,
    3. Sahib AK,
    4. Lerche H,
    5. Braun C,
    6. Focke NK
    (2015) Magnetoencephalography reveals a widespread increase in network connectivity in idiopathic/genetic generalized epilepsy. PLoS ONE, 1–16.
  43. ↵
    1. Vollmar C,
    2. O’Muircheartaigh J,
    3. Barker GJ,
    4. Symms MR,
    5. Thompson P,
    6. Kumari V,
    7. et al.
    (2011) Motor system hyperconnectivity in juvenile myoclonic epilepsy:a cognitive functional magnetic resonance imaging study. Brain 134, 1710–1719.
  44. ↵
    1. Vollmar C,
    2. O’Muircheartaigh J,
    3. Symms MR,
    4. Barker GJ,
    5. Thompson P,
    6. Kumari V,
    7. et al.
    (2012) Altered microstructural connectivity in juvenile myoclonic epilepsy:the missing link. Neurology 78, 1555–1559.
  45. ↵
    1. Mcgill ML,
    2. Devinsky O,
    3. Kelly C,
    4. Milham M,
    5. Castellanos FX,
    6. Quinn BT,
    7. et al.
    (2012) Default mode network abnormalities in idiopathic generalized epilepsy. Epilepsy Behav 23, 353–359.
  46. ↵
    1. Cataldi M,
    2. Avoli M,
    3. De Villers-Sidani E
    (2013) Resting state networks in temporal lobe epilepsy. Epilepsia 54, 2048–2059.
  47. ↵
    1. Vaudano AE,
    2. Laufs H,
    3. Kiebel SJ,
    4. Carmichael DW,
    5. Hamandi K,
    6. Guye M
    (2009) Causal hierarchy within the thalamo-cortical network in spike and wave discharges. Plos One 4, e6475.
  48. ↵
    1. Sakurai K,
    2. Takeda Y,
    3. Tanaka N,
    4. Kurita T,
    5. Shiraishi H,
    6. Takeuchi F,
    7. et al.
    (2010) Generalized spike-wave discharges involve a default mode network in patients with juvenile absence epilepsy:a MEG study. Epilepsy Res 89, 176–184.
  49. ↵
    1. Holmes MD,
    2. Quiring J,
    3. Tucker DM
    (2010) Evidence that juvenile myoclonic epilepsy is a disorder of frontotemporal corticothalamic networks. Neuroimage 49, 80–93.
  50. ↵
    1. Crossley NA,
    2. Mechelli A,
    3. Scott J,
    4. Carletti F,
    5. Fox PT,
    6. McGuire P,
    7. et al.
    (2014) The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain 137, 2382–2395.
  51. ↵
    1. deTisi J,
    2. Bell GS,
    3. Peacock JL,
    4. McEvoy AW,
    5. Harkness WF,
    6. Sander JW,
    7. et al.
    (2011) The long-term outcome of adult epilepsy surgery, patterns of seizure remission, and relapse:a cohort study. Lancet 378, 1388–1395.
  52. ↵
    1. Bonilha L,
    2. Helpern JA,
    3. Sainju R,
    4. Nesland T,
    5. Edwards JC,
    6. Glazier SS,
    7. et al.
    (2013) Presurgical connectome and postsurgical seizure control in temporal lobe epilepsy. Neurology 81, 1704–1710.
  53. ↵
    1. Doucet GE,
    2. Rider R,
    3. Taylor N,
    4. Skidmore C,
    5. Sharan A,
    6. Sperling M,
    7. et al.
    (2015) Presurgery resting-state local graph-theory measures predict neurocognitive outcomes after brain surgery in temporal lobe epilepsy. Epilepsia 56, 517–526.
  54. ↵
    1. Bernhardt BC,
    2. Bernasconi N,
    3. Concha L,
    4. Bernasconi A
    (2010) Cortical thickness analysis in temporal lobe epilepsy:reproducibility and relation to outcome. Neurology 74, 1776–1784.
  55. ↵
    1. Wendling F,
    2. Bartolomei F,
    3. Senhadji L
    (2009) Spatial analysis of intracerebral electroencephalographic signals in the time and frequency domain:identification of epileptogenic networks in partial epilepsy. Philos Transact A Math Phys Eng Sci 367, 297–316.
  56. ↵
    1. Duchowny M
    (2009) Clinical, functional, and neurophysiologic assessment of dysplastic cortical networks:implications for cortical functioning and surgical management. Epilepsia 50, 19–27.
  57. ↵
    1. Bettus G,
    2. Guedj E,
    3. Joyeux F,
    4. Confort-Gouny S,
    5. Soulier E,
    6. Laguitton V,
    7. et al.
    (2009) Decreased basal fMRI functional connectivity in epileptogenic networks and contralateral compensatory mechanisms. Hum Brain Mapp 30, 1580–1591.
    1. Bettus G,
    2. Ranjeva JP,
    3. Wendling F,
    4. Bénar CG,
    5. Confort-Gouny S,
    6. Régis J,
    7. et al.
    (2011) Interictal functional connectivity of human epileptic networks assessed by intracerebral EEG and BOLD signal fluctuations. PLoSOne 6, e20071.
  58. ↵
    1. Pereira FR,
    2. Alessio A,
    3. Sercheli MS,
    4. Pedro T,
    5. Bilevicius E,
    6. Rondina JM,
    7. et al.
    (2010) Asymmetrical hippocampal connectivity in mesial temporal lobe epilepsy:evidence from resting state fMRI. BMC Neurosci 11, 66.
  59. ↵
    1. Voets NL,
    2. Adcock JE,
    3. Stacey R,
    4. Hart Y,
    5. Carpenter K,
    6. Matthews PM,
    7. et al.
    (2009) Functional and structural changes in the memory network associated with left temporal lobe epilepsy. Hum Brain Mapp 30, 4070–4081.
    1. Morgan VL,
    2. Rogers BP,
    3. Sonmezturk HH,
    4. Gore JC,
    5. Abou-Khalil B
    (2011) Cross hippocampal influence in mesial temporal lobe epilepsy measured with high temporal resolution functional magnetic resonance imaging. Epilepsia 52, 1741–1749.
  60. ↵
    1. Pittau F,
    2. Grova C,
    3. Moeller F,
    4. Dubeau F,
    5. Gotman J
    (2012) Patterns of altered functional connectivity in mesial temporal lobe epilepsy. Epilepsia 53, 1013–1023.
  61. ↵
    1. Doucet G,
    2. Osipowicz K,
    3. Sharan A,
    4. Sperling MR,
    5. Tracy JI
    (2013) Hippocampal functional connectivity patterns during spatial working memory differ in right versus left temporal lobe epilepsy. Brain Connect 3, 398–406.
    1. James GA,
    2. Tripathi SP,
    3. Ojemann JG,
    4. Gross RE,
    5. Drane DL
    (2013) Diminished default mode network recruitment of the hippocampus and parahippocampus in temporal lobe epilepsy. J Neurosurg 119, 288–300.
  62. ↵
    1. Haneef Z,
    2. Lenartowicz A,
    3. Yeh HJ,
    4. Levin HS,
    5. Engel J Jr.,
    6. Stern JM
    (2014) Functional connectivity of hippocampal networks in temporal lobe epilepsy. Epilepsia 55, 137–145.
  63. ↵
    1. Dansereau CL,
    2. Bellec P,
    3. Lee K,
    4. Pittau F,
    5. Gotman J,
    6. Grova C
    (2014) Detection of abnormal resting-state networks in individual patients suffering from focal epilepsy:an initial step toward individual connectivity assessment. Front Neurosci 8, 419.
  64. ↵
    1. Sidhu MK,
    2. Stretton J,
    3. Winston GP,
    4. Symms M,
    5. Thompson PJ,
    6. Koepp MJ,
    7. et al.
    (2015) Factors affecting reorganisation of memory encoding networks in temporal lobe epilepsy. Epilepsy Res 110, 1–9.
  65. ↵
    1. Stretton J,
    2. Winston GP,
    3. Sidhu M,
    4. Bonelli S,
    5. Centeno M,
    6. Vollmar C,
    7. et al.
    (2013) Disrupted segregation of working memory networks in temporal lobe epilepsy. Neuroimage Clin 2, 273–281.
  66. ↵
    1. Voets NL,
    2. Beckmann CF,
    3. Cole DM,
    4. Hong S,
    5. Bernasconi A,
    6. Bernasconi N
    (2012) Structural substrates for resting network disruption in temporal lobe epilepsy. Brain 135, 2350–2357.
  67. ↵
    1. Zhang Z,
    2. Lu G,
    3. Zhong Y,
    4. Tan Q,
    5. Liao W,
    6. Chen Z,
    7. et al.
    (2009) Impaired perceptual networks in temporal lobe epilepsy revealed by resting fMRI. J Neurol 256, 1705–1713.
  68. ↵
    1. Pereira FR,
    2. Alessio A,
    3. Sercheli MS,
    4. Pedro T,
    5. Bilevicius E,
    6. Rondina JM,
    7. et al.
    (2010) Asymmetrical hippocampal connectivity in mesial temporal lobe epilepsy:evidence from resting state fMRI. BMC Neurosci 11, 66.
  69. ↵
    1. Chen W,
    2. Hobbs JP,
    3. Tang A,
    4. Beggs JM
    (2010) A few strong connections:optimizing information retention in neuronal avalanches. BMC Neuroscience 11, 3.
  70. ↵
    1. Jiruska P,
    2. De Curtis M,
    3. Jefferys JG,
    4. Schevon CA,
    5. Schiff SJ,
    6. Schindler K
    (2013) Synchronization and desynchronization in epilepsy:controversies and hypotheses. J Physiol 591, 787–797.
PreviousNext
Back to top

In this issue

Neurosciences Journal: 22 (2)
Neurosciences Journal
Vol. 22, Issue 2
1 Apr 2017
  • Table of Contents
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Neurosciences Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Neuronal network models of epileptogenesis
(Your Name) has sent you a message from Neurosciences Journal
(Your Name) thought you would like to see the Neurosciences Journal web site.
Citation Tools
Neuronal network models of epileptogenesis
Aminu T. Abdullahi, Lawan H. Adamu
Neurosciences Journal Apr 2017, 22 (2) 85-93; DOI: 10.17712/nsj.2017.2.20160455

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Neuronal network models of epileptogenesis
Aminu T. Abdullahi, Lawan H. Adamu
Neurosciences Journal Apr 2017, 22 (2) 85-93; DOI: 10.17712/nsj.2017.2.20160455
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Methods
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • eLetters
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Structural and functional changes in the hippocampus induced by environmental exposures
  • Tumefactive demyelinating lesions: A literature review of recent findings
  • Epilepsia partialis continua: A review
Show more Review Article

Similar Articles

Navigate

  • home

More Information

  • Help

Additional journals

  • All Topics

Other Services

  • About

© 2025 Neurosciences Journal Neurosciences is copyright under the Berne Convention and the International Copyright Convention. All rights reserved. Neurosciences is an Open Access journal and articles published are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC). Readers may copy, distribute, and display the work for non-commercial purposes with the proper citation of the original work. Electronic ISSN 1658-3183. Print ISSN 1319-6138.

Powered by HighWire