Skip to main content

Main menu

  • Home
  • Content
    • Latest
    • Ahead of print
    • Archive
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Alerts
    • Feedback
    • Folders
    • Help
  • Other Publications
    • Saudi Medical Journal

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Neurosciences Journal
  • Other Publications
    • Saudi Medical Journal
  • My alerts
  • Log in
Neurosciences Journal

Advanced Search

  • Home
  • Content
    • Latest
    • Ahead of print
    • Archive
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Alerts
    • Feedback
    • Folders
    • Help
  • Follow psmmc on Twitter
  • Visit psmmc on Facebook
  • RSS
Review ArticleSystematic Review
Open Access

Identification of posterior visual pathway lesions and MRI burden in people with Multiple Sclerosis

Tareef S. Daqqaq
Neurosciences Journal April 2021, 26 (2) 120-127; DOI: https://doi.org/10.17712/nsj.2021.2.20200048
Tareef S. Daqqaq
From the Department of Radiology, College of Medicine, Taibah University, Madinah, Kingdom of Saudi Arabia.
MD, Fachartz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • eLetters
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Britze J,
    2. Frederiksen JL
    . Optical coherence tomography in multiple sclerosis. Eye (Lond) 2018; 32: 884-888.
    OpenUrl
  2. 2.↵
    1. Petzold A,
    2. de Boer JF,
    3. Schippling S,
    4. Vermersch P,
    5. Kardon R,
    6. Green A, et al.
    Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol 2010; 9: 921-932.
    OpenUrlCrossRefPubMedWeb of Science
  3. 3.↵
    1. Petzold A,
    2. Wattjes MP,
    3. Costello F,
    4. Flores-Rivera J,
    5. Fraser CL,
    6. Fujihara K, et al.
    The investigation of acute optic neuritis: a review and proposed protocol. Nat Rev Neurol 2014; 10: 447.
    OpenUrlCrossRefPubMed
  4. 4.↵
    1. Nolan-Kenney RC,
    2. Liu M,
    3. Akhand O,
    4. Calabresi PA,
    5. Paul F,
    6. Petzold A, et al.
    Optimal intereye difference thresholds by optical coherence tomography in multiple sclerosis: An an international study. Ann Neurol 2019; 85: 618-629
    OpenUrl
  5. 5.↵
    1. Sinnecker T,
    2. Oberwahrenbrock T,
    3. Metz I,
    4. Zimmermann H,
    5. Pfueller CF,
    6. Harms L, et al.
    Optic radiation damage in multiple sclerosis is associated with visual dysfunction and retinal thinning–an ultrahigh-field MR pilot study. Eur Radiol 2015; 25: 122-131.
    OpenUrlCrossRefPubMed
  6. 6.↵
    1. Pawlitzki M,
    2. Horbrügger M,
    3. Loewe K,
    4. Kaufmann J,
    5. Opfer R,
    6. Wagner M, et al.
    MS optic neuritis-induced long-term structural changes within the visual pathway. Neurol Neuroimmunol Neuroinflamm 2020; 7: 7.
    OpenUrl
  7. 7.↵
    1. Kuchling J,
    2. Brandt AU,
    3. Paul F,
    4. Scheel M.
    Diffusion tensor imaging for multilevel assessment of the visual pathway: possibilities for personalized outcome prediction in autoimmune disorders of the central nervous system. EPMA J 2017; 8: 279-294
    OpenUrl
  8. 8.↵
    1. Backner Y,
    2. Kuchling J,
    3. Massarwa S,
    4. Oberwahrenbrock T,
    5. Finke C,
    6. Bellmann-Strobl J, et al.
    Anatomical wiring and functional networking changes in the visual system following optic neuritis. JAMA Neurol 2018; 75: 287-295.
    OpenUrl
  9. 9.↵
    1. Klistorner A,
    2. Graham EC,
    3. Yiannikas C,
    4. Barnett M,
    5. Parratt J,
    6. Garrick R, et al.
    Progression of retinal ganglion cell loss in multiple sclerosis is associated with new lesions in the optic radiations. Eur J Neurol 2017; 24: 1392-1398.
    OpenUrl
  10. 10.↵
    1. Balcer LJ.
    Optic neuritis. N Engl J Med 2006; 354: 1273-1280.
    OpenUrlCrossRefPubMedWeb of Science
  11. 11.↵
    1. Sisto D,
    2. Trojano M,
    3. Vetrugno M,
    4. Trabucco T,
    5. Iliceto G,
    6. Sborgia C.
    Subclinical visual involvement in multiple sclerosis: a study by MRI, VEPs, frequency-doubling perimetry, standard perimetry, and contrast sensitivity. Invest Ophthalmol Vis Sci 2005; 46: 1264-168.
    OpenUrlAbstract/FREE Full Text
  12. 12.↵
    1. Dasenbrock HH,
    2. Smith SA,
    3. Ozturk A,
    4. Farrell SK,
    5. Calabresi PA,
    6. Reich DS.
    Diffusion tensor imaging of the optic tracts in multiple sclerosis: association with retinal thinning and visual disability. J Neuroimaging 2011; 21: e41-e49.
    OpenUrlCrossRefPubMedWeb of Science
  13. 13.↵
    1. Kale N.
    Optic neuritis as an early sign of multiple sclerosis. Eye Brain 2016; 8: 195-202.
    OpenUrl
  14. 14.↵
    1. Green AJ,
    2. McQuaid S,
    3. Hauser SL,
    4. Allen IV,
    5. Lyness R.
    Ocular pathology in multiple sclerosis: retinal atrophy and inflammation irrespective of disease duration. Brain 2010; 133: 1591-1601.
    OpenUrlCrossRefPubMedWeb of Science
  15. 15.
    1. Gordon-Lipkin E,
    2. Chodkowski B,
    3. Reich DS,
    4. Smith SA,
    5. Pulicken M,
    6. Balcer LJ, et al.
    Retinal nerve fiber layer is associated with brain atrophy in multiple sclerosis. Neurology 2007; 69: 1603-1609.
    OpenUrl
  16. 16.
    1. Evangelou N,
    2. Konz D,
    3. Esiri MM,
    4. Smith S,
    5. Palace J,
    6. Matthews PM.
    Size-selective neuronal changes in the anterior optic pathways suggest a differential susceptibility to injury in multiple sclerosis. Brain 2001; 124: 1813-1820.
    OpenUrlCrossRefPubMedWeb of Science
  17. 17.
    1. Sepulcre J,
    2. Goñi J,
    3. Masdeu JC,
    4. Bejarano B,
    5. de Mendizábal NV,
    6. Toledo JB, et al.
    Contribution of white matter lesions to gray matter atrophy in multiple sclerosis: evidence from voxel-based analysis of T1 lesions in the visual pathway. Arch Neurol 2009; 66: 173-179.
    OpenUrlCrossRefPubMedWeb of Science
  18. 18.
    1. Audoin B,
    2. Fernando KT,
    3. Swanton JK,
    4. Thompson AJ,
    5. Plant GT,
    6. Miller DH.
    Selective magnetization transfer ratio decreases in the visual cortex following optic neuritis. Brain 2006; 129: 1031-1039.
    OpenUrlCrossRefPubMedWeb of Science
  19. 19.↵
    1. Pfueller CF,
    2. Paul F.
    Imaging the visual pathway in neuromyelitis optica. Mult Scler Int 2011; 2011: 869814.
    OpenUrlPubMed
  20. 20.↵
    1. Balcer LJ,
    2. Miller DH,
    3. Reingold SC,
    4. Cohen JA.
    Vision and vision-related outcome measures in multiple sclerosis. Brain 2014; 138: 11-27.
    OpenUrlPubMed
  21. 21.↵
    1. Frohman EM,
    2. Costello F,
    3. Stüve O,
    4. Calabresi P,
    5. Miller DH,
    6. Hickman SJ, et al.
    Modeling axonal degeneration within the anterior visual system: implications for demonstrating neuroprotection in multiple sclerosis. Arch Neurol 2008; 65: 26-35.
    OpenUrlCrossRefPubMedWeb of Science
  22. 22.
    1. Frohman EM,
    2. Fujimoto JG,
    3. Frohman TC,
    4. Calabresi PA,
    5. Cutter G,
    6. Balcer LJ.
    Optical coherence tomography: a window into the mechanisms of multiple sclerosis. Nat Clin Pract Neurol 2008; 4: 664-675.
    OpenUrlCrossRefPubMedWeb of Science
  23. 23.↵
    1. Barkhof F.
    The clinico-radiological paradox in multiple sclerosis revisited. Curr Opin Neurol 2002; 15: 239-245.
    OpenUrlCrossRefPubMedWeb of Science
  24. 24.↵
    1. Rovaris M,
    2. Filippi M.
    Diffusion tensor MRI in multiple sclerosis. J Neuroimaging 2007; 17: S27-S30.
    OpenUrlCrossRefPubMedWeb of Science
  25. 25.
    1. Fox RJ.
    Picturing multiple sclerosis: conventional and diffusion tensor imaging. InSeminars in neurology 2008; 4: 453-466.
    OpenUrl
  26. 26.↵
    1. Reich DS,
    2. Zackowski KM,
    3. Gordon-Lipkin EM,
    4. Smith SA,
    5. Chodkowski BA,
    6. Cutter GR, et al.
    Corticospinal tract abnormalities are associated with weakness in multiple sclerosis. AJNR Am J Neuroradiol 2008; 29: 333-339.
    OpenUrlAbstract/FREE Full Text
  27. 27.↵
    1. Moher D,
    2. Liberati A,
    3. Tetzlaff J,
    4. Altman DG,
    5. Prisma Group
    . Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009; 6: e1000097.
    OpenUrlCrossRefPubMed
  28. 28.↵
    1. Von Elm E,
    2. Altman DG,
    3. Egger M,
    4. Pocock SJ,
    5. Gøtzsche PC,
    6. Vandenbroucke JP.
    The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Ann Intern Med 2007; 147: 573-577.
    OpenUrlCrossRefPubMedWeb of Science
  29. 29.↵
    1. Toosy AT,
    2. Mason DF,
    3. Miller DH.
    Optic neuritis. Lancet Neurol 2014; 13: 83-99.
    OpenUrlCrossRefPubMedWeb of Science
  30. 30.↵
    1. Kupersmith MJ.
    Neuro-vascular neuro-ophthalmology. Springer Science & Business Media; 2012.
  31. 31.↵
    Optic Neuritis Study Group. Visual function more than 10 years after optic neuritis: experience of the optic neuritis treatment trial. Am J Ophthalmol 2004; 137: 77-83.
    OpenUrlCrossRefPubMedWeb of Science
  32. 32.
    Optic Neuritis Study Group. Multiple sclerosis risk after optic neuritis: final optic neuritis treatment trial follow-up. Arch Neurol 2008; 65: 727-732.
    OpenUrlCrossRefPubMedWeb of Science
  33. 33.↵
    Optic Neuritis Study Group. Visual function 15 years after optic neuritis: a final follow-up report from the Optic Neuritis Treatment Trial. Ophthalmology 2008; 115: 1079-1082.
    OpenUrlCrossRefPubMedWeb of Science
  34. 34.↵
    1. Cole SR,
    2. Beck RW,
    3. Moke PS,
    4. Gal RL,
    5. Long DT.
    The Optic Neuritis Study Group. The National Eye Institute visual function questionnaire: experience of the ONTT. Optic Neuritis Treatment Trial. Invest Ophthalmol Vis Sci 2000; 41: 1017-1021.
    OpenUrlAbstract/FREE Full Text
  35. 35.↵
    1. Costello F,
    2. Coupland S,
    3. Hodge W,
    4. Lorello GR,
    5. Koroluk J,
    6. Pan YI, et al.
    Quantifying axonal loss after optic neuritis with optical coherence tomography. Ann Neurol 2006; 59: 963-969.
    OpenUrlCrossRefPubMedWeb of Science
  36. 36.
    1. Costello F,
    2. Hodge W,
    3. Pan YI,
    4. Eggenberger E,
    5. Coupland S,
    6. Kardon RH.
    Tracking retinal nerve fiber layer loss after optic neuritis: a prospective study using optical coherence tomography. Mult Scler 2008; 14: 893-905.
    OpenUrlCrossRefPubMed
  37. 37.↵
    1. Henderson AP,
    2. Altmann DR,
    3. Trip AS,
    4. Kallis C,
    5. Jones SJ,
    6. Schlottmann PG, et al.
    A serial study of retinal changes following optic neuritis with sample size estimates for acute neuroprotection trials. Brain 2010; 133: 2592-2602.
    OpenUrlCrossRefPubMedWeb of Science
  38. 38.↵
    1. Soelberg K,
    2. Specovius S,
    3. Zimmermann HG,
    4. Grauslund J,
    5. Mehlsen JJ,
    6. Olesen C, et al.
    Optical coherence tomography in acute optic neuritis: A population-based study. Acta Neurol Scand 2018; 138: 566-573.
    OpenUrlPubMed
  39. 39.↵
    1. Brandt AU,
    2. Specovius S,
    3. Oberwahrenbrock T,
    4. Zimmermann HG,
    5. Paul F,
    6. Costello F.
    Frequent retinal ganglion cell damage after acute optic neuritis. Mult Scler Relat Disord 2018; 22: 141-147.
    OpenUrlPubMed
  40. 40.↵
    1. Costello F,
    2. Hodge W,
    3. Pan YI,
    4. Burton JM,
    5. Freedman MS,
    6. Stys PK, et al.
    Sex-specific differences in retinal nerve fiber layer thinning after acute optic neuritis. Neurology 2012; 79: 1866-1872.
    OpenUrlCrossRefPubMed
  41. 41.↵
    1. Ruprecht K,
    2. Klinker E,
    3. Dintelmann T,
    4. Rieckmann P,
    5. Gold R.
    Plasma exchange for severe optic neuritis: treatment of 10 patients. Neurology 2004; 63: 1081-1083.
    OpenUrlCrossRefPubMed
  42. 42.↵
    1. Roesner S,
    2. Appel R,
    3. Gbadamosi J,
    4. Martin R,
    5. Heesen C.
    Treatment of steroid-unresponsive optic neuritis with plasma exchange. Acta Neurol Scand 2012; 126: 103-108.
    OpenUrlCrossRefPubMedWeb of Science
  43. 43.↵
    1. Noseworthy JH,
    2. O’brien PC,
    3. Petterson TM,
    4. Weis J,
    5. Stevens L,
    6. Peterson WK, et al.
    A randomized trial of intravenous immunoglobulin in inflammatory demyelinating optic neuritis. Neurology 2001; 56: 1514-1522.
    OpenUrlCrossRefPubMed
  44. 44.↵
    1. Tselis A,
    2. Perumal J,
    3. Caon C,
    4. Hreha S,
    5. Ching W,
    6. Din M, et al.
    Treatment of corticosteroid refractory optic neuritis in multiple sclerosis patients with intravenous immunoglobulin. Eur J Neurol 2008; 15: 1163-1167.
    OpenUrlCrossRefPubMed
  45. 45.↵
    1. Fraser CL,
    2. Davagnanam I,
    3. Radon M,
    4. Plant GT.
    The time course and phenotype of Uhthoff phenomenon following optic neuritis. Mult Scler 2012; 18: 1042-1044.
    OpenUrlCrossRefPubMed
  46. 46.↵
    1. Raz N,
    2. Dotan S,
    3. Benoliel T,
    4. Chokron S,
    5. Ben-Hur T,
    6. Levin N.
    Sustained motion perception deficit following optic neuritis: Behavioral and cortical evidence. Neurology 2011; 76: 2103-2111.
    OpenUrlCrossRefPubMed
  47. 47.↵
    1. Raz N,
    2. Chokron S,
    3. Ben-Hur T,
    4. Levin N.
    Temporal reorganization to overcome monocular demyelination. Neurology 2013; 81: 702-709.
    OpenUrlCrossRefPubMed
  48. 48.↵
    1. Pineles SL,
    2. Birch EE,
    3. Talman LS,
    4. Sackel DJ,
    5. Frohman EM,
    6. Calabresi PA, et al.
    One eye or two: a comparison of binocular and monocular low-contrast acuity testing in multiple sclerosis. Am J Ophthalmol 2011; 152: 133-140.
    OpenUrlCrossRefPubMed
  49. 49.↵
    1. Martínez-Lapiscina EH,
    2. Fraga-Pumar E,
    3. Gabilondo I,
    4. Martínez-Heras E,
    5. Torres-Torres R,
    6. Ortiz-Pérez S, et al.
    The multiple sclerosis visual pathway cohort: understanding neurodegeneration in MS. BMC Res Notes 2014; 7: 910.
    OpenUrl
  50. 50.↵
    1. Syc SB,
    2. Saidha S,
    3. Newsome SD,
    4. Ratchford JN,
    5. Levy M,
    6. Ford ET, et al.
    Optical coherence tomography segmentation reveals ganglion cell layer pathology after optic neuritis. Brain 2011; 135: 521-533.
    OpenUrlPubMed
  51. 51.↵
    1. Walter SD,
    2. Ishikawa H,
    3. Galetta KM,
    4. Sakai RE,
    5. Feller DJ,
    6. Henderson SB, et al.
    Ganglion cell loss in relation to visual disability in multiple sclerosis. Ophthalmology 2012; 119: 1250-1257.
    OpenUrlCrossRefPubMedWeb of Science
  52. 52.↵
    1. Ratchford JN,
    2. Saidha S,
    3. Sotirchos ES,
    4. Oh JA,
    5. Seigo MA,
    6. Eckstein C, et al.
    Active MS is associated with accelerated retinal ganglion cell/inner plexiform layer thinning. Neurology 2013; 80: 47-54.
    OpenUrlCrossRefPubMed
  53. 53.↵
    1. Saidha S,
    2. Sotirchos ES,
    3. Oh J,
    4. Syc SB,
    5. Seigo MA,
    6. Shiee N, et al.
    Relationships between retinal axonal and neuronal measures and global central nervous system pathology in multiple sclerosis. JAMA Neurol 2013; 70: 34-43.
    OpenUrl
  54. 54.↵
    1. Gelfand JM,
    2. Goodin DS,
    3. Boscardin WJ,
    4. Nolan R,
    5. Cuneo A,
    6. Green AJ.
    Retinal axonal loss begins early in the course of multiple sclerosis and is similar between progressive phenotypes. PLoS One 2012; 7: e36847.
    OpenUrlCrossRefPubMed
  55. 55.↵
    1. Saidha S,
    2. Sotirchos ES,
    3. Ibrahim MA,
    4. Crainiceanu CM,
    5. Gelfand JM,
    6. Sepah YJ, et al.
    Microcystic macular oedema, thickness of the inner nuclear layer of the retina, and disease characteristics in multiple sclerosis: a retrospective study. Lancet Neurol 2012; 11: 963-972.
    OpenUrlCrossRefPubMedWeb of Science
  56. 56.↵
    1. Kaufhold F,
    2. Zimmermann H,
    3. Schneider E,
    4. Ruprecht K,
    5. Paul F,
    6. Oberwahrenbrock T, et al.
    Optic neuritis is associated with inner nuclear layer thickening and microcystic macular edema independently of multiple sclerosis. PloS one 2013; 8: e71145.
    OpenUrlCrossRefPubMed
  57. 57.↵
    1. Brandt AU,
    2. Oberwahrenbrock T,
    3. Kadas EM,
    4. Lagrèze WA,
    5. Paul F.
    Dynamic formation of macular microcysts independent of vitreous traction changes. Neurology 2014; 83: 73-77.
    OpenUrlCrossRefPubMed
  58. 58.↵
    1. Burggraaff MC,
    2. Trieu J,
    3. de Vries-Knoppert WA,
    4. Balk L,
    5. Petzold A.
    The clinical spectrum of microcystic macular edema. Invest Ophthalmol Vis Sci 2014; 55: 952-961.
    OpenUrlAbstract/FREE Full Text
  59. 59.↵
    1. Saidha S,
    2. Syc SB,
    3. Ibrahim MA,
    4. Eckstein C,
    5. Warner CV,
    6. Farrell SK, et al.
    Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography. Brain 2011; 134: 518-533.
    OpenUrlCrossRefPubMedWeb of Science
  60. 60.↵
    1. Brandt AU,
    2. Oberwahrenbrock T,
    3. Ringelstein M,
    4. Young KL,
    5. Tiede M,
    6. Hartung HP,
    7. Martin R,
    8. Aktas O,
    9. Paul F,
    10. Schippling S.
    Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography. Brain 2011; 134: e193-e194.
    OpenUrlCrossRefPubMed
  61. 61.
    1. Wu GF,
    2. Schwartz ED,
    3. Lei T,
    4. Souza A,
    5. Mishra S,
    6. Jacobs DA, et al.
    Relation of vision to global and regional brain MRI in multiple sclerosis. Neurology 2007; 69: 2128-2135.
    OpenUrlCrossRef
  62. 62.
    1. Trip SA,
    2. Miller DH.
    Imaging in multiple sclerosis. J Neurol Neurosurg Psychiatry 2005; 76: iii11-iii18.
  63. 63.
    1. Kanamori A,
    2. Nakamura M,
    3. Escano MF,
    4. Seya R,
    5. Maeda H,
    6. Negi A.
    Evaluation of the glaucomatous damage on retinal nerve fiber layer thickness measured by optical coherence tomography. Am J Ophthalmol 2003; 135: 513-520.
    OpenUrlCrossRefPubMedWeb of Science
  64. 64.
    1. Kalincik T.
    Multiple sclerosis relapses: epidemiology, outcomes and management. A systematic review. Neuroepidemiology 2015; 44: 199-214.
    OpenUrlCrossRefPubMed
  65. 65.
    1. Sepulcre J,
    2. Murie-Fernandez M,
    3. Salinas-Alaman A,
    4. García-Layana A,
    5. Bejarano B,
    6. Villoslada P.
    Diagnostic accuracy of retinal abnormalities in predicting disease activity in MS. Neurology 2007; 68: 1488-1494.
    OpenUrlCrossRefPubMed
  66. 66.
    1. Grazioli E,
    2. Zivadinov R,
    3. Weinstock-Guttman B,
    4. Lincoff N,
    5. Baier M,
    6. Wong JR, et al.
    Retinal nerve fiber layer thickness is associated with brain MRI outcomes in multiple sclerosis. J Neurol Sci 2008; 268: 12-17.
    OpenUrlCrossRefPubMedWeb of Science
  67. 67.
    1. Siger M,
    2. Dzięgielewski K,
    3. Jasek L,
    4. Bieniek M,
    5. Nicpan A,
    6. Nawrocki J, et al.
    Optical coherence tomography in multiple sclerosis. J Neurol 2008; 255: 1555-1560.
    OpenUrlCrossRefPubMedWeb of Science
  68. 68.
    1. Dörr J,
    2. Wernecke KD,
    3. Bock M,
    4. Gaede G,
    5. Wuerfel JT,
    6. Pfueller CF, et al.
    Association of retinal and macular damage with brain atrophy in multiple sclerosis. PLoS One 2011; 6: e18132.
    OpenUrlCrossRefPubMed
  69. 69.
    1. Naismith RT,
    2. Piccio L,
    3. Lyons JA,
    4. Lauber J,
    5. Tutlam NT,
    6. Parks BJ, et al.
    Rituximab add-on therapy for breakthrough relapsing multiple sclerosis: a 52-week phase II trial. Neurology 2010; 74: 1860-1867.
    OpenUrlCrossRefPubMed
  70. 70.
    1. Smith SA,
    2. Williams ZR,
    3. Ratchford JN,
    4. Newsome SD,
    5. Farrell SK,
    6. Farrell JA, et al.
    Diffusion tensor imaging of the optic nerve in multiple sclerosis: association with retinal damage and visual disability. AJNR Am J Neuroradiol 2011; 32: 1662-1668.
    OpenUrlAbstract/FREE Full Text
  71. 71.
    1. Naismith RT,
    2. Xu J,
    3. Tutlam NT,
    4. Lancia S,
    5. Trinkaus K,
    6. Song SK, et al.
    Diffusion tensor imaging in acute optic neuropathies: predictor of clinical outcomes. Arch Neurol 2012; 69: 65-71.
    OpenUrlCrossRefPubMedWeb of Science
  72. 72.
    1. Schmierer K,
    2. Scaravilli F,
    3. Altmann DR,
    4. Barker GJ,
    5. Miller DH.
    Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann Neurol 2004; 56: 407-415.
    OpenUrlCrossRefPubMedWeb of Science
  73. 73.
    1. Hickman SJ,
    2. Toosy AT,
    3. Jones SJ,
    4. Altmann DR,
    5. Miszkiel KA,
    6. MacManus DG, et al.
    A serial MRI study following optic nerve mean area in acute optic neuritis. Brain 2004; 127: 2498-2505.
    OpenUrlCrossRefPubMedWeb of Science
  74. 74.↵
    1. Sriram P,
    2. Graham SL,
    3. Wang C,
    4. Yiannikas C,
    5. Garrick R,
    6. Klistorner A.
    Transsynaptic retinal degeneration in optic neuropathies: optical coherence tomography study. Invest Ophthalmol Vis Sci 2012; 53: 1271-1275.
    OpenUrlAbstract/FREE Full Text
  75. 75.↵
    1. Iñigo Gabilondo,
    2. Elena H
    3. Martínez-Lapiscina, Eloy Martínez-Heras,
    4. Elena Fraga-Pumar,
    5. Sara Llufriu, et al.
    Trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. Ann Neurol 2014; 75: 98-107.
    OpenUrlCrossRefPubMed
  76. 76.↵
    1. Oberwahrenbrock T,
    2. Traber GL,
    3. Lukas S,
    4. Gabilondo I,
    5. Nolan R,
    6. Songster C, et al.
    Multicenter reliability of semiautomatic retinal layer segmentation using OCT. Neurol Neuroimmunol Neuroinflamm 2018; 5: e449.
    OpenUrlAbstract/FREE Full Text
  77. 77.↵
    1. Keltner JL,
    2. Cello KE,
    3. Balcer LJ,
    4. Calabresi PA,
    5. Markowitz CE,
    6. Werner JS.
    Stratus OCT quality control in two multi-centre multiple sclerosis clinical trials. Neuro-ophthalmology 2011; 35: 57-64.
    OpenUrlCrossRef
  78. 78.↵
    1. Cruz-Herranz A,
    2. Balk LJ,
    3. Oberwahrenbrock T,
    4. Saidha S,
    5. Martinez-Lapiscina EH,
    6. Lagreze WA, et al.
    The APOSTEL recommendations for reporting quantitative optical coherence tomography studies. Neurology 2016; 86: 2303-2309.
    OpenUrlPubMed
  79. 79.↵
    1. Schippling S,
    2. Balk LJ,
    3. Costello F,
    4. Albrecht P,
    5. Balcer L,
    6. Calabresi PA, et al.
    Quality control for retinal OCT in multiple sclerosis: validation of the OSCAR-IB criteria. Mult Scler 2015; 21: 163-170.
    OpenUrlCrossRefPubMed
  80. 80.↵
    1. Heesen C,
    2. Haase R,
    3. Melzig S,
    4. Poettgen J,
    5. Berghoff M,
    6. Paul F, et al.
    Perceptions on the value of bodily functions in multiple sclerosis. Acta Neurol Scand 2018; 137: 356-362.
    OpenUrl
  81. 81.↵
    1. Gehr S,
    2. Kaiser T,
    3. Kreutz R,
    4. Ludwig WD,
    5. Paul F.
    Suggestions for improving the design of clinical trials in multiple sclerosis—results of a systematic analysis of completed phase III trials. EPMA J 2019; 10: 425-436.
    OpenUrl
PreviousNext
Back to top

In this issue

Neurosciences Journal: 26 (2)
Neurosciences Journal
Vol. 26, Issue 2
1 Apr 2021
  • Table of Contents
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Neurosciences Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Identification of posterior visual pathway lesions and MRI burden in people with Multiple Sclerosis
(Your Name) has sent you a message from Neurosciences Journal
(Your Name) thought you would like to see the Neurosciences Journal web site.
Citation Tools
Identification of posterior visual pathway lesions and MRI burden in people with Multiple Sclerosis
Tareef S. Daqqaq
Neurosciences Journal Apr 2021, 26 (2) 120-127; DOI: 10.17712/nsj.2021.2.20200048

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Identification of posterior visual pathway lesions and MRI burden in people with Multiple Sclerosis
Tareef S. Daqqaq
Neurosciences Journal Apr 2021, 26 (2) 120-127; DOI: 10.17712/nsj.2021.2.20200048
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Methods
    • Results
    • Discussion
    • Acknowledgements
    • Footnotes
    • References
  • Figures & Data
  • eLetters
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Risk factors for unexplained early neurological deterioration after intravenous thrombolysis: a meta-analysis
  • Diagnostic effectiveness of deep learning-based MRI in predicting multiple sclerosis: A meta-analysis
  • Management of Lennox-Gastaut syndrome with deep brain stimulation: A systematic literature review
Show more Systematic Review

Similar Articles

Navigate

  • home

More Information

  • Help

Additional journals

  • All Topics

Other Services

  • About

© 2025 Neurosciences Journal Neurosciences is copyright under the Berne Convention and the International Copyright Convention. All rights reserved. Neurosciences is an Open Access journal and articles published are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC). Readers may copy, distribute, and display the work for non-commercial purposes with the proper citation of the original work. Electronic ISSN 1658-3183. Print ISSN 1319-6138.

Powered by HighWire