Skip to main content

Main menu

  • Home
  • Content
    • Latest
    • Ahead of print
    • Archive
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Alerts
    • Feedback
    • Folders
    • Help
  • Other Publications
    • Saudi Medical Journal

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Neurosciences Journal
  • Other Publications
    • Saudi Medical Journal
  • My alerts
  • Log in
Neurosciences Journal

Advanced Search

  • Home
  • Content
    • Latest
    • Ahead of print
    • Archive
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Alerts
    • Feedback
    • Folders
    • Help
  • Follow psmmc on Twitter
  • Visit psmmc on Facebook
  • RSS
Systematic ReviewSystematic Review
Open Access

Positron emission tomography and perfusion weighted imaging in the detection of brain tumors recurrence

A meta-analysis

Tareef S. Daqqaq and Ayman S. Alhasan
Neurosciences Journal July 2022, 27 (3) 131-142; DOI: https://doi.org/10.17712/nsj.2022.3.20210146
Tareef S. Daqqaq
From the Department of Radiology, College of Medicine, Taibah University, Al Madinah Al Munawwarah, Kingdom of Saudi Arabia.
MBBS, Facharzt
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Ayman S. Alhasan
From the Department of Radiology, College of Medicine, Taibah University, Al Madinah Al Munawwarah, Kingdom of Saudi Arabia.
MBBS, DES
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • eLetters
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Kheirollahi M,
    2. Dashti S,
    3. Khalaj Z,
    4. Nazemroaia F,
    5. Mahzouni P.
    Brain tumors: special characters for research and banking. Adv Biomed Res 2015; 4: 4.
    OpenUrl
  2. 2.↵
    1. Perkins A,
    2. Liu G.
    Primary brain tumors in adults: diagnosis and treatment. Am Fam Physician 2016; 93: 211–217.
    OpenUrl
  3. 3.↵
    1. Lin X,
    2. DeAngelis LM.
    Treatment of brain metastases. J Clin Oncol 2015; 33: 3475–3484.
    OpenUrlAbstract/FREE Full Text
  4. 4.↵
    1. Langleben DD,
    2. Segall GM.
    PET in differentiation of recurrent brain tumor from radiation injury. J Nucl Med 2000; 41: 1861–1867.
    OpenUrlAbstract/FREE Full Text
  5. 5.↵
    1. Louis DN,
    2. Ohgaki H,
    3. Wiestler OD,
    4. Cavenee WK,
    5. Burger PC,
    6. Jouvet A, et al.
    The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007; 114: 97–109.
    OpenUrlCrossRefPubMedWeb of Science
  6. 6.↵
    1. Gállego Pérez-Larraya J,
    2. Delattre J.
    Management of elderly patients with gliomas. Oncologist 2014; 19: 1258–1267.
    OpenUrlAbstract/FREE Full Text
  7. 7.↵
    1. Wesseling P,
    2. Capper D.
    WHO 2016 classification of gliomas. Neuropathol Appl Neurobiol 2018; 44: 139–150.
    OpenUrlCrossRefPubMed
  8. 8.↵
    1. Ostrom QT,
    2. Gittleman H,
    3. Farah P,
    4. Ondracek A,
    5. Chen Y,
    6. Wolinsky Y, et al.
    CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006-2010. Neuro Oncol 2013; 15: ii1–ii56.
    OpenUrlCrossRefPubMed
  9. 9.↵
    1. De Vleeschouwer S
    1. Tamimi AF,
    2. Juweid M.
    Epidemiology and outcome of glioblastoma. In: De Vleeschouwer S, editor. Glioblastoma. Brisbane (AU): Codon Publications; 2017.
  10. 10.↵
    1. Ostrom QT,
    2. Cote DJ,
    3. Ascha M,
    4. Kruchko C,
    5. Barnholtz-Sloan JS.
    Adult glioma incidence and survival by race or ethnicity in the United States from 2000 to 2014. JAMA Oncol 2018; 4: 1254–1262.
    OpenUrl
  11. 11.↵
    1. Minniti G,
    2. Filippi AR,
    3. Osti MF,
    4. Ricardi U.
    Radiation therapy for older patients with brain tumors. Radiat Oncol 2017; 12: 101.
    OpenUrl
  12. 12.↵
    1. Winter SF,
    2. Loebel F,
    3. Loeffler J,
    4. Batchelor TT,
    5. Martinez-Lage M,
    6. Vajkoczy P, et al.
    Treatment-induced brain tissue necrosis: a clinical challenge in neuro-oncology. Neuro Oncol 2019; 21: 1118–1130.
    OpenUrl
  13. 13.↵
    1. Ellingson BM,
    2. Chung C,
    3. Pope WB,
    4. Boxerman JL,
    5. Kaufmann TJ. Pseudoprogression
    , radionecrosis, inflammation or true tumor progression? Challenges associated with glioblastoma response assessment in an evolving therapeutic landscape. J Neurooncol 2017; 134: 495–504.
    OpenUrlCrossRefPubMed
  14. 14.↵
    1. Wang L,
    2. Wei L,
    3. Wang J,
    4. Li N,
    5. Gao Y,
    6. Ma H, et al.
    Evaluation of perfusion MRI value for tumor progression assessment after glioma radiotherapy: a systematic review and meta-analysis. Medicine 2020; 99: e23766.
    OpenUrl
  15. 15.↵
    1. Wen PY,
    2. Macdonald DR,
    3. Reardon DA,
    4. Cloughesy TF,
    5. Sorensen AG,
    6. Galanis E, et al.
    Updated response assessment criteria for high-grade gliomas: response assessment in Neuro-Oncology Working Group. J Clin Oncol 2010; 28: 1963–1972.
    OpenUrlAbstract/FREE Full Text
  16. 16.↵
    1. Malone H,
    2. Yang J,
    3. Hershman DL,
    4. Wright JD,
    5. Bruce JN,
    6. Neugut AI.
    Complications following stereotactic needle biopsy of intracranial tumors. World Neurosurg 2015; 84: 1084–1089.
    OpenUrlCrossRefPubMed
  17. 17.↵
    1. Villanueva-Meyer JE,
    2. Mabray MC,
    3. Cha S.
    Current clinical brain tumor imaging. Neurosurgery 2017; 81: 397–415.
    OpenUrlCrossRefPubMed
  18. 18.↵
    1. Testud B,
    2. Brun G,
    3. Varoquaux A,
    4. Hak JF,
    5. Appay R,
    6. Le Troter A, et al.
    Perfusion-weighted techniques in MRI grading of pediatric cerebral tumors: efficiency of dynamic susceptibility contrast and arterial spin labeling. Neuroradiology 2021; 63: 1353–1366.
    OpenUrl
  19. 19.↵
    1. Langen KJ,
    2. Heinzel A,
    3. Lohmann P,
    4. Mottaghy FM,
    5. Galldiks N.
    Advantages and limitations of amino acid PET for tracking therapy response in glioma patients. Expert Rev Neurother 2020; 20: 137–146.
    OpenUrl
  20. 20.↵
    1. Treglia G,
    2. Muoio B,
    3. Trevisi G,
    4. Mattoli MV,
    5. Albano D,
    6. Bertagna F, et al.
    Diagnostic performance and prognostic value of PET/CT with different tracers for brain tumors: a systematic review of published meta-analyses. Int J Mol Sci 2019; 20: 4669.
    OpenUrl
  21. 21.↵
    1. Långström B,
    2. Antoni G,
    3. Gullberg P,
    4. Halldin C,
    5. Malmborg P,
    6. Någren K, et al.
    Synthesis of L- and D-[methyl-11C]methionine. J Nucl Med 1987; 28: 1037–1040.
    OpenUrlAbstract/FREE Full Text
  22. 22.↵
    1. Galldiks N,
    2. Langen KJ,
    3. Pope WB.
    From the clinician’s point of view - What is the status quo of positron emission tomography in patients with brain tumors? Neuro Oncol 2015; 17: 1434–1444.
    OpenUrlCrossRefPubMed
  23. 23.↵
    1. Mitsuya K,
    2. Nakasu Y,
    3. Horiguchi S,
    4. Harada H,
    5. Nishimura T,
    6. Bando E, et al.
    Perfusion weighted magnetic resonance imaging to distinguish the recurrence of metastatic brain tumors from radiation necrosis after stereotactic radiosurgery. J Neurooncol 2010; 99: 81–88.
    OpenUrlCrossRefPubMed
  24. 24.↵
    1. Liberati A,
    2. Altman DG,
    3. Tetzlaff J,
    4. Mulrow C,
    5. Gøtzsche PC,
    6. Ioannidis JPA, et al.
    The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. BMJ 2009; 339: b2700.
    OpenUrlAbstract/FREE Full Text
  25. 25.↵
    1. Stroup DF,
    2. Berlin JA,
    3. Morton SC,
    4. Olkin I,
    5. Williamson GD,
    6. Rennie D, et al.
    Meta-analysis of observational studies in epidemiology: a proposal for reporting. JAMA 2000; 283: 2008–2012.
    OpenUrlCrossRefPubMedWeb of Science
  26. 26.↵
    1. Whiting PF,
    2. Rutjes AW,
    3. Westwood ME,
    4. Mallett S,
    5. Deeks JJ,
    6. Reitsma JB, et al.
    QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 2011; 155: 529–536.
    OpenUrlCrossRefPubMedWeb of Science
  27. 27.↵
    1. Borenstein M,
    2. Hedges LV,
    3. Higgins JPT,
    4. Rothstein HR.
    A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Method 2010; 1: 97–111.
    OpenUrlCrossRef
  28. 28.↵
    1. Cicone F,
    2. Minniti G,
    3. Romano A,
    4. Papa A,
    5. Scaringi C,
    6. Tavanti F, et al.
    Accuracy of F-DOPA PET and perfusion-MRI for differentiating radionecrotic from progressive brain metastases after radiosurgery. Eur J Nucl Med Mol Imaging 2015; 42: 103–111.
    OpenUrlCrossRefPubMed
  29. 29.
    1. Dandois V,
    2. Rommel D,
    3. Renard L,
    4. Jamart J,
    5. Cosnard G.
    Substitution of 11C-methionine PET by perfusion MRI during the follow-up of treated high-grade gliomas: preliminary results in clinical practice. J Neuroradiol 2010; 37: 89–97.
    OpenUrlCrossRefPubMed
  30. 30.
    1. D’Souza MM,
    2. Sharma R,
    3. Jaimini A,
    4. Panwar P,
    5. Saw S,
    6. Kaur P, et al.
    11C-MET PET/CT and advanced MRI in the evaluation of tumor recurrence in high-grade gliomas. Clin Nucl Med 2014; 39: 791–798.
    OpenUrlCrossRefPubMed
  31. 31.
    1. Estrada G,
    2. González-Maya L,
    3. Celis-López MA,
    4. Gavito J,
    5. Lárraga-Gutiérrez JM,
    6. Salgado P, et al.
    Diagnostic approach in suspected recurrent primary brain tumors using 18FDG-PET/MRI, perfusion MRI, visual and quantitative analysis, and three dimensional stereotactic surface projections. First experience in Mexico. Rev Esp Med Nucl 2008; 27: 329–339.
    OpenUrlCrossRefPubMed
  32. 32.
    1. Hatzoglou V,
    2. Yang TJ,
    3. Omuro A,
    4. Gavrilovic I,
    5. Ulaner G,
    6. Rubel J, et al.
    A prospective trial of dynamic contrast-enhanced MRI perfusion and fluorine-18 FDG PET-CT in differentiating brain tumor progression from radiation injury after cranial irradiation. Neuro Oncol 2016; 18: 873–880.
    OpenUrlCrossRefPubMed
  33. 33.
    1. Hojjati M,
    2. Badve C,
    3. Garg V,
    4. Tatsuoka C,
    5. Rogers L,
    6. Sloan A, et al.
    Role of FDG-PET/MRI, FDG-PET/CT, and dynamic susceptibility contrast perfusion MRI in differentiating radiation necrosis from tumor recurrence in glioblastomas. J Neuroimaging 2018; 28: 118–125.
    OpenUrlCrossRefPubMed
  34. 34.
    1. Jabeen S,
    2. Arbind A,
    3. Kumar D,
    4. Singh PK,
    5. Saini J,
    6. Sadashiva N, et al.
    Combined amino acid PET-MRI for identifying recurrence in post-treatment gliomas: together we grow. Eur J Hybrid Imaging 2021; 5: 15.
    OpenUrl
  35. 35.
    1. Kim YH,
    2. Oh SW,
    3. Lim YJ,
    4. Park CK,
    5. Lee SH,
    6. Kang KW, et al.
    Differentiating radiation necrosis from tumor recurrence in high-grade gliomas: assessing the efficacy of 18F-FDG PET, 11C-methionine PET and perfusion MRI. Clin Neurol Neurosurg 2010; 112: 758–765.
    OpenUrlCrossRefPubMed
  36. 36.
    1. Prat R,
    2. Galeano I,
    3. Lucas A,
    4. Martínez JC,
    5. Martín M,
    6. Amador R, et al.
    Relative value of magnetic resonance spectroscopy, magnetic resonance perfusion, and 2-(18F) fluoro-2-deoxy-D-glucose positron emission tomography for detection of recurrence or grade increase in gliomas. J Clin Neurosci 2010; 17: 50–53.
    OpenUrlCrossRefPubMed
  37. 37.
    1. Pyka T,
    2. Hiob D,
    3. Preibisch C,
    4. Gempt J,
    5. Wiestler B,
    6. Schlegel J, et al.
    Diagnosis of glioma recurrence using multiparametric dynamic 18F-fluoroethyl-tyrosine PET-MRI. Eur J Radiol 2018; 103: 32–37.
    OpenUrlCrossRefPubMed
  38. 38.
    1. Qiao Z,
    2. Zhao X,
    3. Wang K,
    4. Zhang Y,
    5. Fan D,
    6. Yu T, et al.
    Utility of dynamic susceptibility contrast perfusion-weighted MR imaging and 11 C-methionine PET/CT for differentiation of tumor recurrence from radiation injury in patients with high-grade gliomas. AJNR Am J Neuroradiol 2019; 40: 253–259.
    OpenUrlAbstract/FREE Full Text
  39. 39.↵
    1. Sacconi B,
    2. Raad RA,
    3. Lee J,
    4. Fine H,
    5. Kondziolka D,
    6. Golfinos JG, et al.
    Concurrent functional and metabolic assessment of brain tumors using hybrid PET/MR imaging. J Neurooncol 2016; 127: 287–293.
    OpenUrl
  40. 40.↵
    1. Seligman L,
    2. Kovanlikaya I,
    3. Pisapia DJ,
    4. Naeger DM,
    5. Magge R,
    6. Fine HA, et al.
    Integrated PET-MRI for glioma surveillance: perfusion-metabolism discordance rate and association with molecular profiling. Am J Roentgenol 2019; 212: 883–891.
    OpenUrlCrossRefPubMed
  41. 41.↵
    1. Steidl E,
    2. Langen KJ,
    3. Hmeidan SA,
    4. Polomac N,
    5. Filss CP,
    6. Galldiks N, et al.
    Sequential implementation of DSC-MR perfusion and dynamic [18F]FET PET allows efficient differentiation of glioma progression from treatment-related changes. Eur J Nucl Med Mol Imaging 2021; 48: 1956–1965.
    OpenUrlCrossRefPubMed
  42. 42.↵
    1. Lee J,
    2. Wang N,
    3. Turk S,
    4. Mohammed S,
    5. Lobo R,
    6. Kim J, et al.
    Discriminating pseudoprogression and true progression in diffuse infiltrating glioma using multi-parametric MRI data through deep learning. Sci Rep 2020; 10: 20331.
    OpenUrl
  43. 43.↵
    1. Yu FF,
    2. Rapalino O. Treated Gliomas
    . In: Neuroradiology. Amsterdam: Elsevier; 2019. p. 136–152.
  44. 44.↵
    1. Chao ST,
    2. Ahluwalia MS,
    3. Barnett GH,
    4. Stevens GHJ,
    5. Murphy ES,
    6. Stockham AL, et al.
    Challenges with the diagnosis and treatment of cerebral radiation necrosis. Int J Radiat Oncol Biol Phys 2013; 87: 449–457.
    OpenUrlCrossRefPubMed
  45. 45.↵
    1. Taghipour Zahir S
    , Rezaei sadrabadi M, Dehghani F. Evaluation of diagnostic value of CT scan and MRI in brain tumors and comparison with biopsy. Iran J Ped Hematol Oncol 2011; 1: 121–125.
    OpenUrl
  46. 46.↵
    1. Aquino D,
    2. Gioppo A,
    3. Finocchiaro G,
    4. Bruzzone MG,
    5. Cuccarini V.
    MRI in glioma immunotherapy: evidence, pitfalls, and perspectives. J Immunol Res 2017; 2017: 5813951.
    OpenUrl
  47. 47.↵
    1. Young RJ,
    2. Gupta A,
    3. Shah AD,
    4. Graber JJ,
    5. Zhang Z,
    6. Shi W, et al.
    Potential utility of conventional MRI signs in diagnosing pseudoprogression in glioblastoma. Neurology 2011; 76: 1918–1924.
    OpenUrlCrossRefPubMed
  48. 48.↵
    1. Patel P,
    2. Baradaran H,
    3. Delgado D,
    4. Askin G,
    5. Christos P,
    6. John Tsiouris A, et al.
    MR perfusion-weighted imaging in the evaluation of high-grade gliomas after treatment: a systematic review and meta-analysis. Neuro Oncol 2017; 19: 118–127.
    OpenUrlCrossRefPubMed
  49. 49.↵
    1. Nihashi T,
    2. Dahabreh IJ,
    3. Terasawa T.
    Diagnostic accuracy of PET for recurrent glioma diagnosis: a meta-analysis. AJNR Am J Neuroradiol 2013; 34: 944–950.
    OpenUrlAbstract/FREE Full Text
  50. 50.↵
    1. Mehrkens JH,
    2. Pöpperl G,
    3. Rachinger W,
    4. Herms J,
    5. Seelos K,
    6. Tatsch K, et al.
    The positive predictive value of O-(2-[18F]fluoroethyl)-l-tyrosine (FET) PET in the diagnosis of a glioma recurrence after multimodal treatment. J Neurooncol 2008; 88: 27–35.
    OpenUrlCrossRefPubMed
  51. 51.↵
    1. Spence AM,
    2. Muzi M,
    3. Link JM,
    4. O’Sullivan F,
    5. Eary JF,
    6. Hoffman JM, et al.
    NCI-sponsored trial for the evaluation of safety and preliminary efficacy of 3′-deoxy-3′-[18F]fluorothymidine (FLT) as a marker of proliferation in patients with recurrent gliomas: preliminary efficacy studies. Mol Imaging Biol 2009; 11: 343–355.
    OpenUrlCrossRefPubMed
  52. 52.↵
    1. de Zwart PL,
    2. van Dijken BRJ,
    3. Holtman GA,
    4. Stormezand GN,
    5. Dierckx RAJO,
    6. Jan van Laar P, et al.
    Diagnostic accuracy of PET tracers for the differentiation of tumor progression from treatment-related changes in high-grade glioma: a systematic review and metaanalysis. J Nucl Med 2020; 61: 498–504.
    OpenUrlAbstract/FREE Full Text
  53. 53.↵
    1. Vagal A,
    2. Vossough A,
    3. Lev MH,
    4. Wintermark M.
    Central nervous system infarction. In: Handbook of neuro-oncology neuroimaging. Amsterdam: Elsevier; 2016. p. 89–98.
  54. 54.↵
    1. Essig M,
    2. Shiroishi MS,
    3. Nguyen TB,
    4. Saake M,
    5. Provenzale JM,
    6. Enterline D, et al.
    Perfusion MRI: the five most frequently asked technical questions. Am J Roentgenol 2013; 200: 24–34.
    OpenUrlCrossRefPubMedWeb of Science
  55. 55.↵
    1. Li Z,
    2. Zhou P,
    3. Xiong Z,
    4. Ma Z,
    5. Wang S,
    6. Bian H, et al.
    Perfusion-weighted magnetic resonance imaging used in assessing hemodynamics following superficial temporal artery-middle cerebral artery bypass in patients with moyamoya disease. Cerebrovasc Dis 2013; 35: 455–460.
    OpenUrl
  56. 56.↵
    1. Berger M,
    2. Gould MK,
    3. Barnett PG.
    The cost of positron emission tomography in six United States Veterans Affairs Hospitals and two academic medical centers. Am J Roentgenol 2003; 181: 359–365.
    OpenUrlCrossRefPubMedWeb of Science
  57. 57.↵
    1. Imrey PB.
    Limitations of meta-analyses of studies with high heterogeneity. JAMA Netw Open 2020; 3: e1919325.
    OpenUrl
PreviousNext
Back to top

In this issue

Neurosciences Journal: 27 (3)
Neurosciences Journal
Vol. 27, Issue 3
1 Jul 2022
  • Table of Contents
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Neurosciences Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Positron emission tomography and perfusion weighted imaging in the detection of brain tumors recurrence
(Your Name) has sent you a message from Neurosciences Journal
(Your Name) thought you would like to see the Neurosciences Journal web site.
Citation Tools
Positron emission tomography and perfusion weighted imaging in the detection of brain tumors recurrence
Tareef S. Daqqaq, Ayman S. Alhasan
Neurosciences Journal Jul 2022, 27 (3) 131-142; DOI: 10.17712/nsj.2022.3.20210146

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Positron emission tomography and perfusion weighted imaging in the detection of brain tumors recurrence
Tareef S. Daqqaq, Ayman S. Alhasan
Neurosciences Journal Jul 2022, 27 (3) 131-142; DOI: 10.17712/nsj.2022.3.20210146
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Methods
    • Results
    • Discussion
    • Acknowledgment
    • Footnotes
    • References
  • Figures & Data
  • eLetters
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Risk factors for unexplained early neurological deterioration after intravenous thrombolysis: a meta-analysis
  • Diagnostic effectiveness of deep learning-based MRI in predicting multiple sclerosis: A meta-analysis
  • Management of Lennox-Gastaut syndrome with deep brain stimulation: A systematic literature review
Show more Systematic Review

Similar Articles

Navigate

  • home

More Information

  • Help

Additional journals

  • All Topics

Other Services

  • About

© 2025 Neurosciences Journal Neurosciences is copyright under the Berne Convention and the International Copyright Convention. All rights reserved. Neurosciences is an Open Access journal and articles published are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC). Readers may copy, distribute, and display the work for non-commercial purposes with the proper citation of the original work. Electronic ISSN 1658-3183. Print ISSN 1319-6138.

Powered by HighWire