Skip to main content

Main menu

  • Home
  • Content
    • Latest
    • Ahead of print
    • Archive
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Alerts
    • Feedback
    • Folders
    • Help
  • Other Publications
    • Saudi Medical Journal

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Neurosciences Journal
  • Other Publications
    • Saudi Medical Journal
  • My alerts
  • Log in
Neurosciences Journal

Advanced Search

  • Home
  • Content
    • Latest
    • Ahead of print
    • Archive
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Alerts
    • Feedback
    • Folders
    • Help
  • Follow psmmc on Twitter
  • Visit psmmc on Facebook
  • RSS
Review ArticleReview Article
Open Access

Alterations of the occipital lobe in schizophrenia

Hassaan Tohid, Muhammad Faizan and Uzma Faizan
Neurosciences Journal July 2015, 20 (3) 213-224; DOI: https://doi.org/10.17712/nsj.2015.3.20140757
Hassaan Tohid
From the University of California, Davis (Tohid), UC Davis, Los Angeles, UCLA, and the Napa State Hospital (Tohid), Napa, California, United States of America, and Sindh Medical College (Faizan, M, Faizan U), Dow University of Health Sciences, Jinnah Postgraduate Medical Center, Karachi, Pakistan
MBBS
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Muhammad Faizan
From the University of California, Davis (Tohid), UC Davis, Los Angeles, UCLA, and the Napa State Hospital (Tohid), Napa, California, United States of America, and Sindh Medical College (Faizan, M, Faizan U), Dow University of Health Sciences, Jinnah Postgraduate Medical Center, Karachi, Pakistan
MBBS
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Uzma Faizan
From the University of California, Davis (Tohid), UC Davis, Los Angeles, UCLA, and the Napa State Hospital (Tohid), Napa, California, United States of America, and Sindh Medical College (Faizan, M, Faizan U), Dow University of Health Sciences, Jinnah Postgraduate Medical Center, Karachi, Pakistan
MBBS
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • eLetters
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. ↵
    1. Harrison PJ
    (1999) The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 122, 593–624.
  2. ↵
    1. Géraud M
    (2007) [Emil Kraepelin: a pioneer of modern psychiatry. On the occasion of the hundred and fiftieth anniversary of his birth]. Encephale 33, 561–567, French.
  3. ↵
    1. Bjorkquist O
    (2005) Social perception in schizophrenia: Evidence of the occipital and prefrontal dysfunction [dissertation] (University of California, Los Angeles (CA)) Available from:http://indigo.uic.edu/bitstream/handle/10027/9635/Bjorkquist_Olivia.pdf?sequence=1.
  4. ↵
    1. Cazaban A
    The Effects of Schizophrenia on the Brain. Second Web Reports On Serendip. 2003: Biology. Available from: http://serendip.brynmawr.edu/bb/neuro/neuro03/web2/acazaban.html.
  5. ↵
    1. Castle DJ,
    2. Buckley PF
    , eds (2008) Schizophrenia (Oxford University Press, New York (NY)).
  6. ↵
    1. Phillips WA,
    2. Silverstein SM
    (2003) Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. Behav Brain Sci 26, 65–82, discussion 82-137.
  7. ↵
    1. Uhlhaas PJ,
    2. Haenschel C,
    3. Nikolić D,
    4. Singer W
    (2008) The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia. Schizophr Bull 34, 927–943.
  8. ↵
    1. Vai B,
    2. Sferrazza Papa G,
    3. Poletti S,
    4. Radaelli D,
    5. Donnici E,
    6. Bollettini I
    (2015) Abnormal cortico-limbic connectivity during emotional processing correlates with symptom severity in schizophrenia. Eur Psychiatry 30, 590–597.
  9. ↵
    1. Flores LP
    (2002) Occipital lobe morphological anatomy: anatomical and surgical aspects. Arq Neuropsiquiatr 60, 566–571.
  10. ↵
    1. Taylor I,
    2. Scheffer IE,
    3. Berkovic SF
    (2003) Occipital epilepsies: identification of specific and newly recognized syndromes. Brain 126, 753–769.
  11. ↵
    1. Proposal for classification of epilepsies and epileptic syndromes
    (1985) Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia 26, 268–278.
  12. ↵
    1. Sveinbjornsdottir S,
    2. Duncan JS
    (1993) Parietal and occipital lobe epilepsy: a review. Epilepsia 34, 493–521.
  13. ↵
    1. Naess H,
    2. Waje-Andreassen U,
    3. Thomassen L
    (2007) Occipital lobe infarctions are different. Vasc Health Risk Manag 3, 413–415.
  14. ↵
    1. Holt LJ,
    2. Anderson SF
    (2000) Bilateral occipital lobe stroke with inferior altitudinal defects. Optometry 71, 690–702.
  15. ↵
    1. Waknine Y
    (2004) Dream loss in stroke patient linked to the occipital Lobe Damage. Medscape; Sep 10. Available from:http://www.medscape.com/viewarticle/489030. Cited date 2015 March 30; Updated date 2015 March 31.
  16. ↵
    1. Ungerleider LG,
    2. Haxby JV
    (1994) ‘What’ and ‘where’ in the human brain. Curr Opin Neurobiol 4, 157–165.
  17. ↵
    1. Dichter GS,
    2. Felder JN,
    3. Bodfish JW,
    4. Sikich L,
    5. Belger A
    (2009) Mapping social target detection with functional magnetic resonance imaging. Soc Cogn Affect Neurosci 4, 59–69.
  18. ↵
    1. Morris JP,
    2. Pelphrey KA,
    3. McCarthy G
    (2006) Occipitotemporal activation evoked by the perception of human bodies is modulated by the presence or absence of the face. Neuropsychologia 44, 1919–1927.
  19. ↵
    1. Murty VP,
    2. Ritchey M,
    3. Adcock RA,
    4. LaBar KS
    (2010) fMRI studies of successful emotional memory encoding: A quantitative meta-analysis. Neuropsychologia 48, 3459–3469.
  20. ↵
    (2013) Diagnostic and Statistical Manual of Mental Disorders ((DSM-V) American Psychiatric Association, Washington (DC)), 5th ed, Available from:http://www.dsm5.org/Documents/Schizophrenia%20Fact%20Sheet.pdf.
  21. ↵
    1. American Psychiatric Association
    (2000) Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR) (American Psychiatric Press, Washington (DC)), 4th ed.
  22. ↵
    1. Frankenburg FR,
    2. Dunayevich E,
    3. Schizophrenia. Medscape
    , Available from:www.emedicine.medscape.com/article/288259-overview. Cited date 2015 March 30; Updated date 2015 March 31.
  23. ↵
    1. Andreasen NC,
    2. Flashman L,
    3. Flaum M,
    4. Arndt S,
    5. Swayze V 2nd.,
    6. O’Leary DS,
    7. et al.
    (1994) Regional brain abnormalities in schizophrenia measured with magnetic resonance imaging. JAMA 272, 1763–1769.
    1. Bilder RM,
    2. Wu H,
    3. Bogerts B,
    4. Degreef G,
    5. Ashtari M,
    6. Alvir JM,
    7. et al.
    (1994) Absence of regional hemispheric volume asymmetries in first-episode schizophrenia. Am J Psychiatry 151, 1437–1447.
  24. ↵
    1. Bilder RM,
    2. Wu H,
    3. Bogerts B,
    4. Ashtari M,
    5. Robinson D,
    6. Woerner M,
    7. et al.
    (1999) Cerebral volume asymmetries in schizophrenia and mood disorders: a quantitative magnetic resonance imaging study. Int J Psychophysiol 34, 197–205.
  25. ↵
    1. Zipursky RB,
    2. Lim KO,
    3. Sullivan EV,
    4. Brown BW,
    5. Pfefferbaum A
    (1992) Widespread cerebral gray matter volume deficits in schizophrenia. Arch Gen Psychiatry 49, 195–205.
  26. ↵
    1. Goldstein JM,
    2. Goodman JM,
    3. Seidman LJ,
    4. Kennedy DN,
    5. Makris N,
    6. Lee H,
    7. et al.
    (1999) Cortical abnormalities in schizophrenia identified by structural magnetic resonance imaging. Arch Gen Psychiatry 56, 537–547.
  27. ↵
    1. Kubicki M,
    2. Shenton ME,
    3. Salisbury DF,
    4. Hirayasu Y,
    5. Kasai K,
    6. Kikinis R,
    7. et al.
    (2002) Voxel-based morphometric analysis of gray matter in first episode schizophrenia. Neuroimage 17, 1711–1719.
  28. ↵
    1. Fraguas D,
    2. Díaz-Caneja CM,
    3. Pina-Camacho L,
    4. Janssen J,
    5. Arango C
    (2014) Progressive brain changes in children and adolescents with early-onset psychosis: A meta-analysis of longitudinal MRI studies. Schizophr Res 12, 22.
  29. ↵
    1. Daniel DG,
    2. Myslobodsky MS,
    3. Ingraham LJ,
    4. Coppola R,
    5. Weinberger DR
    (1989) The relationship of occipital skull asymmetry to brain parenchymal measures in schizophrenia. Schizophr Res 2, 465–472.
  30. ↵
    1. Phillips OR,
    2. Nuechterlein KH,
    3. Asarnow RF,
    4. Clark KA,
    5. Cabeen R,
    6. Yang Y,
    7. et al.
    (2011) Mapping corticocortical structural integrity in schizophrenia and effects of genetic liability. Biol Psychiatry 70, 680–689.
  31. ↵
    1. Spalletta G,
    2. De Rossi P,
    3. Piras F,
    4. Iorio M,
    5. Dacquino C,
    6. Scanu F,
    7. et al.
    (2015) Brain white matter microstructure in deficit and non-deficit subtypes of schizophrenia. Psychiatry Res 231, 252–261.
  32. ↵
    1. Guo X,
    2. Li J,
    3. Wei Q,
    4. Fan X,
    5. Kennedy DN,
    6. Shen Y,
    7. et al.
    (2013) Duration of untreated psychosis is associated with temporal and occipitotemporal gray matter volume decrease in treatment naïve schizophrenia. PLoS One 8, e83679.
  33. ↵
    1. Anderson D,
    2. Ardekani BA,
    3. Burdick KE,
    4. Robinson DG,
    5. John M,
    6. Malhotra AK,
    7. et al.
    (2013) Overlapping and distinct gray and white matter abnormalities in schizophrenia and bipolar I disorder. Bipolar Disord 15, 680–693.
  34. ↵
    1. Nieuwenhuis M,
    2. van Haren NE,
    3. Hulshoff Pol HE,
    4. Cahn W,
    5. Kahn RS,
    6. Schnack HG
    (2012) Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples. Neuroimage 61, 606–612.
  35. ↵
    1. Fujimoto T,
    2. Okumura E,
    3. Takeuchi K,
    4. Kodabashi A,
    5. Otsubo T,
    6. Nakamura K,
    7. et al.
    (2013) Dysfunctional cortical connectivity during the auditory oddball task in patients with schizophrenia. Open Neuroimag J 7, 15–26.
  36. ↵
    1. Yao L,
    2. Lui S,
    3. Liao Y,
    4. Du MY,
    5. Hu N,
    6. Thomas JA,
    7. et al.
    (2013) White matter deficits in first episode schizophrenia: an activation likelihood estimation meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 45, 100–106.
  37. ↵
    1. Wei QL,
    2. Wang YX,
    3. Gan ZY,
    4. Li LJ,
    5. Zheng LR,
    6. Guo XF,
    7. et al.
    (2012) [Diffusion tensor imaging analyses of white matter at an early stage of first-episode schizophrenia]. Zhonghua Yi Xue Za Zhi 92, 1307–1309, Chinese.
  38. ↵
    1. Dusi N,
    2. Perlini C,
    3. Bellani M,
    4. Brambilla P
    (2012) [Searching for psychosocial endophenotypes in schizophrenia: the innovative role of brain imaging]. Riv Psichiatr 47, 76–88, Italian.
  39. ↵
    1. Wei QL,
    2. Han ZL,
    3. Wu XL,
    4. Kang Z,
    5. Li LJ,
    6. Zheng LR,
    7. et al.
    (2011) [Comparison of white matter integrity of schizophrenic patients with and without impulsive behaviors by diffusion tensor magnetic resonance imaging]. Zhonghua Yi Xue Za Zhi 91, 3030–3033, Chinese.
  40. ↵
    1. Huang CH,
    2. Deng W,
    3. Chen ZF,
    4. Li ML,
    5. Lu S,
    6. Jiang LJ,
    7. et al.
    (2009) [Brain structure abnormality as genetic endophenotype of schizophrenia]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 26, 490–494, Chinese.
  41. ↵
    1. Plomp G,
    2. Roinishvili M,
    3. Chkonia E,
    4. Kapanadze G,
    5. Kereselidze M,
    6. Brand A,
    7. et al.
    (2013) Electrophysiological evidence for ventral stream deficits in schizophrenia patients. Schizophr Bull 39, 547–554.
  42. ↵
    1. Chan WY,
    2. Yang GL,
    3. Chia MY,
    4. Lau IY,
    5. Sitoh YY,
    6. Nowinski WL,
    7. et al.
    (2010) White matter abnormalities in first-episode schizophrenia: a combined structural MRI and DTI study. Schizophr Res 119, 52–60.
  43. ↵
    1. Miyata J,
    2. Yamada M,
    3. Namiki C,
    4. Hirao K,
    5. Saze T,
    6. Fujiwara H,
    7. et al.
    (2010) Reduced white matter integrity as a neural correlate of social cognition deficits in schizophrenia. Schizophr Res 119, 232–239.
  44. ↵
    1. Tordesillas-Gutierrez D,
    2. Koutsouleris N,
    3. Roiz-Santiañez R,
    4. Meisenzahl E,
    5. Ayesa-Arriola R,
    6. Marco de Lucas E,
    7. et al.
    (2015) Grey matter volume differences in non-affective psychosis and the effects of age of onset on grey matter volumes: A voxelwise study. Schizophr Res 164, 74–82.
  45. ↵
    1. Melicher T,
    2. Horacek J,
    3. Hlinka J,
    4. Spaniel F,
    5. Tintera J,
    6. Ibrahim I,
    7. et al.
    (2015) White matter changes in first episode psychosis and their relation to the size of sample studied: a DTI study. Schizophr Res 162, 22–28.
  46. ↵
    1. Achim AM,
    2. Lepage M
    (2005) Episodic memory-related activation in schizophrenia: meta-analysis. Br J Psychiatry 187, 500–509.
    1. Fusar-Poli P,
    2. Perez J,
    3. Broome M,
    4. Borgwardt S,
    5. Placentino A,
    6. Caverzasi E,
    7. et al.
    (2007) Neurofunctional correlates of vulnerability to psychosis: a systematic review and meta-analysis. Neurosci Biobehav Rev 31, 465–484.
    1. Li H,
    2. Chan RC,
    3. McAlonan GM,
    4. Gong QY
    (2010) Facial emotion processing in schizophrenia: a meta-analysis of functional neuroimaging data. Schizophr Bull 36, 1029–1039.
  47. ↵
    1. Minzenberg MJ,
    2. Laird AR,
    3. Thelen S,
    4. Carter CS,
    5. Glahn DC
    (2009) Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Arch Gen Psychiatry 66, 811–822.
  48. ↵
    1. Collier AK,
    2. Wolf DH,
    3. Valdez JN,
    4. Gur RE,
    5. Gur RC
    (2014) Subsequent memory effects in schizophrenia. Psychiatry Res 224, 211–217.
  49. ↵
    1. Pirnia T,
    2. Woods RP,
    3. Hamilton LS,
    4. Lyden H,
    5. Joshi SH,
    6. Asarnow RF,
    7. et al.
    (2015) Hippocampal dysfunction during declarative memory encoding in schizophrenia and effects of genetic liability. Schizophr Res 161, 357–366.
  50. ↵
    1. Hart SJ,
    2. Bizzell J,
    3. McMahon MA,
    4. Gu H,
    5. Perkins DO,
    6. Belger A
    (2013) Altered fronto-limbic activity in children and adolescents with familial high risk for schizophrenia. Psychiatry Res 212, 19–27.
  51. ↵
    1. Rigucci S,
    2. Rossi-Espagnet C,
    3. Ferracuti S,
    4. De Carolis A,
    5. Corigliano V,
    6. Carducci F,
    7. et al.
    (2013) Anatomical substrates of cognitive and clinical dimensions in first episode schizophrenia. Acta Psychiatr Scand 128, 261–270.
  52. ↵
    1. Calderone DJ,
    2. Martinez A,
    3. Zemon V,
    4. Hoptman MJ,
    5. Hu G,
    6. Watkins JE,
    7. et al.
    (2013) Comparison of psychophysical, electrophysiological, and fMRI assessment of visual contrast responses in patients with schizophrenia. Neuroimage 67, 153–162.
  53. ↵
    1. Collin G,
    2. de Reus MA,
    3. Cahn W,
    4. Hulshoff Pol HE,
    5. Kahn RS,
    6. van den Heuvel MP
    (2013) Disturbed grey matter coupling in schizophrenia. Eur Neuropsychopharmacol 23, 46–54.
  54. ↵
    1. Woodward ND,
    2. Karbasforoushan H,
    3. Heckers S
    (2012) Thalamocortical dysconnectivity in schizophrenia. Am J Psychiatry 169, 1092–1099.
  55. ↵
    1. Buchy L,
    2. Ad-Dab’bagh Y,
    3. Lepage C,
    4. Malla A,
    5. Joober R,
    6. Evans A,
    7. et al.
    (2012) Symptom attribution in first episode psychosis: a cortical thickness study. Psychiatry Res 203, 6–13.
  56. ↵
    1. Hoptman MJ,
    2. Zuo XN,
    3. D’Angelo D,
    4. Mauro CJ,
    5. Butler PD,
    6. Milham MP
    (2012) Decreased interhemispheric coordination in schizophrenia: a resting state fMRI study. Schizophr Res 141, 1–7.
  57. ↵
    1. Kyriakopoulos M,
    2. Dima D,
    3. Roiser JP,
    4. Corrigall R,
    5. Barker GJ,
    6. Frangou S
    (2012) Abnormal functional activation and connectivity in the working memory network in early-onset schizophrenia. J Am Acad Child Adolesc Psychiatry 51, 911–920.
  58. ↵
    1. Fujimoto T,
    2. Okumura E,
    3. Takeuchi K,
    4. Kodabashi A,
    5. Tanaka H,
    6. Otsubo T,
    7. et al.
    (2012) Changes in Event-Related Desynchronization and Synchronization during the Auditory Oddball Task in Schizophrenia Patients. Open Neuroimag J 6, 26–36.
  59. ↵
    1. Sekimoto M,
    2. Kato M,
    3. Watanabe T,
    4. Kajimura N,
    5. Takahashi K
    (2011) Cortical regional differences of delta waves during all-night sleep in schizophrenia. Schizophr Res 126, 284–290.
  60. ↵
    1. Taylor SF,
    2. Chen AC,
    3. Tso IF,
    4. Liberzon I,
    5. Welsh RC
    (2011) Social appraisal in chronic psychosis: role of medial frontal and occipital networks. J Psychiatr Res 45, 526–538.
  61. ↵
    1. White T,
    2. Schmidt M,
    3. Kim DI,
    4. Calhoun VD
    (2011) Disrupted functional brain connectivity during verbal working memory in children and adolescents with schizophrenia. Cereb Cortex 21, 510–518.
  62. ↵
    1. Hartberg CB,
    2. Lawyer G,
    3. Nyman H,
    4. Jönsson EG,
    5. Haukvik UK,
    6. Saetre P
    (2010) Investigating relationships between cortical thickness and cognitive performance in patients with schizophrenia and healthy adults. Psychiatry Res 182, 123–133.
  63. ↵
    1. Habel U,
    2. Koch K,
    3. Kellermann T,
    4. Reske M,
    5. Frommann N,
    6. Wölwer W,
    7. et al.
    (2010) Training of affect recognition in schizophrenia: Neurobiological correlates. Soc Neurosci 5, 92–104.
  64. ↵
    1. Henseler I,
    2. Falkai P,
    3. Gruber O
    (2010) Disturbed functional connectivity within brain networks subserving domain-specific subcomponents of working memory in schizophrenia: relation to performance and clinical symptoms. J Psychiatr Res 44, 364–372.
  65. ↵
    1. Zhuo C,
    2. Zhu J,
    3. Qin W,
    4. Qu H,
    5. Ma X,
    6. Tian H
    (2014) Functional connectivity density alterations in schizophrenia. Front Behav Neurosci 8, 404.
  66. ↵
    1. Wende KC,
    2. Nagels A,
    3. Stratmann M,
    4. Chatterjee A,
    5. Kircher T,
    6. Straube B
    (2015) Neural basis of altered physical and social causality judgements in schizophrenia. Schizophr Res 161, 244–251.
  67. ↵
    1. Steen RG,
    2. Hamer RM,
    3. Lieberman JA
    (2005) Measurement of brain metabolites by 1H magnetic resonance spectroscopy in patients with schizophrenia: a systematic review and meta-analysis. Neuropsychopharmacology 30, 1949–1962.
  68. ↵
    1. Goto N,
    2. Yoshimura R,
    3. Kakeda S,
    4. Moriya J,
    5. Hayashi K,
    6. Ikenouchi-Sugita A,
    7. et al.
    (2011) Comparison of brain N-acetylaspartate levels and serum brain-derived neurotrophic factor (BDNF) levels between patients with first-episode schizophrenia psychosis and healthy controls. Eur Psychiatry 26, 57–63.
  69. ↵
    1. Michel TM,
    2. Sheldrick AJ,
    3. Camara S,
    4. Grünblatt E,
    5. Schneider F,
    6. Riederer P
    (2011) Alteration of the pro-oxidant xanthine oxidase (XO) in the thalamus and occipital cortex of patients with schizophrenia. World J Biol Psychiatry 12, 588–597.
  70. ↵
    1. Thompson PM,
    2. Vidal C,
    3. Giedd JN,
    4. Gochman P,
    5. Blumenthal J,
    6. Nicolson R,
    7. et al.
    (2001) Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proc Natl Acad Sci U S A 98, 11650–11655.
  71. ↵
    1. Toga AW,
    2. Thompson PM,
    3. Sowell ER
    (2006) Mapping brain maturation. Trends Neurosci 29, 148–159.
  72. ↵
    1. Nicolson R,
    2. Rapoport JL
    (1999) Childhood-onset schizophrenia: rare but worth studying. Biol Psychiatry 46, 1418–1428.
  73. ↵
    1. Selemon LD,
    2. Rajkowska G,
    3. Goldman-Rakic PS
    (1995) Abnormally high neuronal density in the schizophrenic cortex. A morphometric analysis of prefrontal area 9 and occipital area 17. Arch Gen Psychiatry 52, 805–818, discussion 819-20.
  74. ↵
    1. Weinberger DR
    (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44, 660–669.
  75. ↵
    1. Selemon LD,
    2. Goldman-Rakic PS
    (1999) The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry 45, 17–25.
  76. ↵
    1. Onitsuka T,
    2. McCarley RW,
    3. Kuroki N,
    4. Dickey CC,
    5. Kubicki M,
    6. Demeo SS,
    7. et al.
    (2007) Occipital lobe gray matter volume in male patients with chronic schizophrenia: A quantitative MRI study. Schizophr Res 92, 197–206.
  77. ↵
    1. Mitelman SA,
    2. Buchsbaum MS
    (2007) Very poor outcome schizophrenia: clinical and neuroimaging aspects. Int Rev Psychiatry 19, 345–357.
  78. ↵
    1. Ragland JD,
    2. Laird AR,
    3. Ranganath C,
    4. Blumenfeld RS,
    5. Gonzales SM,
    6. Glahn DC
    (2009) Prefrontal activation deficits during episodic memory in schizophrenia. Am J Psychiatry 166, 863–874.
  79. ↵
    1. Falkai P,
    2. Schneider T,
    3. Greve B,
    4. Klieser E,
    5. Bogerts B
    (1995) Reduced frontal and occipital lobe asymmetry on the CT-scans of schizophrenic patients. Its specificity and clinical significance. J Neural Transm Gen Sect 99, 63–77.
PreviousNext
Back to top

In this issue

Neurosciences Journal: 20 (3)
Neurosciences Journal
Vol. 20, Issue 3
1 Jul 2015
  • Table of Contents
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Neurosciences Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Alterations of the occipital lobe in schizophrenia
(Your Name) has sent you a message from Neurosciences Journal
(Your Name) thought you would like to see the Neurosciences Journal web site.
Citation Tools
Alterations of the occipital lobe in schizophrenia
Hassaan Tohid, Muhammad Faizan, Uzma Faizan
Neurosciences Journal Jul 2015, 20 (3) 213-224; DOI: 10.17712/nsj.2015.3.20140757

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Alterations of the occipital lobe in schizophrenia
Hassaan Tohid, Muhammad Faizan, Uzma Faizan
Neurosciences Journal Jul 2015, 20 (3) 213-224; DOI: 10.17712/nsj.2015.3.20140757
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Footnotes
    • References
  • Figures & Data
  • eLetters
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Structural and functional changes in the hippocampus induced by environmental exposures
  • Tumefactive demyelinating lesions: A literature review of recent findings
  • Epilepsia partialis continua: A review
Show more Review Article

Similar Articles

Navigate

  • home

More Information

  • Help

Additional journals

  • All Topics

Other Services

  • About

© 2025 Neurosciences Journal Neurosciences is copyright under the Berne Convention and the International Copyright Convention. All rights reserved. Neurosciences is an Open Access journal and articles published are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC). Readers may copy, distribute, and display the work for non-commercial purposes with the proper citation of the original work. Electronic ISSN 1658-3183. Print ISSN 1319-6138.

Powered by HighWire