Skip to main content

Main menu

  • Home
  • Content
    • Latest
    • Ahead of print
    • Archive
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Alerts
    • Feedback
    • Folders
    • Help
  • Other Publications
    • Saudi Medical Journal

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Neurosciences Journal
  • Other Publications
    • Saudi Medical Journal
  • My alerts
  • Log in
Neurosciences Journal

Advanced Search

  • Home
  • Content
    • Latest
    • Ahead of print
    • Archive
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Alerts
    • Feedback
    • Folders
    • Help
  • Follow psmmc on Twitter
  • Visit psmmc on Facebook
  • RSS
Research ArticleOriginal Article
Open Access

Leveraging multivariate analysis and adjusted mutual information to improve stroke prediction and interpretability

Moutasem S. Aboonq and Saeed A. Alqahtani
Neurosciences Journal July 2024, 29 (3) 190-196; DOI: https://doi.org/10.17712/nsj.2024.3.20230100
Moutasem S. Aboonq
From the Department of Physiology, College of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Kingdom of Saudi Arabia
MD, PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Moutasem S. Aboonq
  • For correspondence: [email protected]
Saeed A. Alqahtani
From the Department of Physiology, College of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Kingdom of Saudi Arabia
MD, PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • eLetters
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Feigin VL,
    2. Brainin M,
    3. Norrving B,
    4. Martins S,
    5. Sacco RL,
    6. Hacke W, et al.
    World Stroke Organization (WSO): Global Stroke Fact Sheet 2022. Int J Stroke 2022; 17: 18-29.
    OpenUrlCrossRefPubMed
  2. 2.↵
    Stroke Facts. National Center for Chronic Disease Prevention and Health Promotion; About the Division for Heart Disease and Stroke Prevention 2024. https://www.cdc.gov/stroke/data-research/facts-stats/index.html
  3. 3.↵
    1. Tsao CW,
    2. Aday AW,
    3. Almarzooq ZI,
    4. Anderson CAM,
    5. Arora P,
    6. Avery CL, et al.
    Heart Disease and Stroke Statistics—2023 Update: A Report From the American Heart Association. Circulation 2023; 147: e93–e621
    OpenUrlPubMed
  4. 4.↵
    Stroke Risk Factors, Genetics, and Prevention | Circulation Research [Internet]. [cited 2022 Dec 29]. Available from: https://www.ahajournals.org/doi/10.1161/circresaha.116.308398
  5. 5.↵
    1. Diaz MA,
    2. Rosendale N
    . Exploring Stroke Risk Factors and Outcomes in Sexual and Gender Minority People. Neurol Clin Pract 2023; 13: 1-10.
    OpenUrlCrossRef
  6. 6.↵
    1. Bukhari S,
    2. Yaghi S,
    3. Bashir Z
    . Stroke in Young Adults. J Clin Med 2023; 12: 4999.
    OpenUrl
  7. 7.↵
    1. Delgardo M,
    2. Rabin G,
    3. Tudor T,
    4. Tang AJ,
    5. Reeves G,
    6. Connolly ES
    . Monitoring risk and preventing ischemic stroke in the very old. Expert Rev Neurother 2023; 23: 791-801.
    OpenUrl
  8. 8.↵
    1. Hong C,
    2. Pencina MJ,
    3. Wojdyla DM,
    4. Hall JL,
    5. Judd SE,
    6. Cary M, et al.
    Predictive accuracy of stroke risk prediction models across black and white race, sex, and age groups. JAMA 2023; 329: 306-317.
    OpenUrl
  9. 9.↵
    1. Nagar AK,
    2. Singh Jat D,
    3. Mishra DK,
    4. Joshi A
    1. Zafeiropoulos N,
    2. Mavrogiorgou A,
    3. Kleftakis S,
    4. Mavrogiorgos K,
    5. Kiourtis A,
    6. Kyriazis D
    . Interpretable Stroke Risk Prediction Using Machine Learning Algorithms. In: Nagar AK, Singh Jat D, Mishra DK, Joshi A, editors. Intelligent Sustainable Systems. Singapore: Springer Nature Singapore; 2023. p. 647–56. Available from: https://link.springer.com/10.1007/978-981-19-7663-6_61
  10. 10.↵
    1. Khosravi B,
    2. Weston AD,
    3. Nugen F,
    4. Mickley JP,
    5. Kremers HM,
    6. Wyles CC, et al.
    Demystifying statistics and machine learning in analysis of structured tabular data. J Arthroplasty 2023; 38: 1943-1947.
    OpenUrl
  11. 11.↵
    1. Chandrabhatla AS,
    2. Kuo EA,
    3. Sokolowski JD,
    4. Kellogg RT,
    5. Park M,
    6. Mastorakos P
    . Artificial Intelligence and Machine Learning in the Diagnosis and Management of Stroke: A Narrative Review of United States Food and Drug Administration-Approved Technologies. J Clin Med 2023; 12: 3755.
    OpenUrl
  12. 12.
    1. Sheth SA,
    2. Giancardo L,
    3. Colasurdo M,
    4. Srinivasan VM,
    5. Niktabe A,
    6. Kan P
    . Machine learning and acute stroke imaging. J Neurointerventional Surg 2023; 15: 195-199.
    OpenUrl
  13. 13.↵
    1. Daidone M,
    2. Ferrantelli S,
    3. Tuttolomondo A
    . Machine learning applications in stroke medicine: advancements, challenges, and future prospectives. Neural Regen Res 2024; 19: 769-773.
    OpenUrl
  14. 14.↵
    CDC - 2021 BRFSS Survey Data and Documentation [Internet]. 2023 [cited 2023 Oct 1]. Available from: https://www.cdc.gov/brfss/annual_data/annual_2021.html
  15. 15.↵
    1. Reeves MJ,
    2. Bushnell CD,
    3. Howard G,
    4. Gargano JW,
    5. Duncan PW,
    6. Lynch G, et al.
    Sex differences in stroke: epidemiology, clinical presentation, medical care, and outcomes. Lancet Neurol 2008; 7: 915-926.
    OpenUrlCrossRefPubMedWeb of Science
  16. 16.↵
    1. Ahnstedt H,
    2. McCullough LD,
    3. Cipolla MJ
    . The Importance of Considering Sex Differences in Translational Stroke Research. Transl Stroke Res 2016; 7: 261-273.
    OpenUrlCrossRefPubMed
  17. 17.↵
    1. Shajahan S,
    2. Sun L,
    3. Harris K,
    4. Wang X,
    5. Sandset EC,
    6. Yu AY, et al.
    Sex differences in the symptom presentation of stroke: A systematic review and meta-analysis. Int J Stroke 2023; 18: 144-153.
    OpenUrl
  18. 18.↵
    1. Chen RL,
    2. Balami JS,
    3. Esiri MM,
    4. Chen LK,
    5. Buchan AM
    . Ischemic stroke in the elderly: an overview of evidence. Nat Rev Neurol 2010; 6: 256-265.
    OpenUrlCrossRefPubMedWeb of Science
  19. 19.
    1. Yousufuddin M,
    2. Young N
    . Aging and ischemic stroke. Aging 2019; 11: 2542.
    OpenUrlPubMed
  20. 20.↵
    1. Popa-Wagner A,
    2. Petcu EB,
    3. Capitanescu B,
    4. Hermann DM,
    5. Radu E,
    6. Gresita A
    . Ageing as a risk factor for cerebral ischemia: underlying mechanisms and therapy in animal models and in the clinic. Mech Ageing Dev 2020; 190: 111312.
    OpenUrl
  21. 21.↵
    1. Strazzullo P,
    2. D’Elia L,
    3. Cairella G,
    4. Garbagnati F,
    5. Cappuccio FP,
    6. Scalfi L
    . Excess Body Weight and Incidence of Stroke: Meta-Analysis of Prospective Studies With 2 Million Participants. Stroke 2010; 41: e418–e426. Available from: https://www.ahajournals.org/doi/10.1161/STROKEAHA.109.576967
    OpenUrlAbstract/FREE Full Text
  22. 22.↵
    1. Horn JW,
    2. Feng T,
    3. Mørkedal B,
    4. Aune D,
    5. Strand LB,
    6. Horn J, et al.
    Body Mass Index Measured Repeatedly over 42 Years as a Risk Factor for Ischemic Stroke: The HUNT Study. Nutrients 2023;15: 1232.
    OpenUrlCrossRef
  23. 23.↵
    1. Hamatani Y,
    2. Ogawa H,
    3. Uozumi R,
    4. Iguchi M,
    5. Yamashita Y,
    6. Esato M, et al.
    Low body weight is associated with the incidence of stroke in atrial fibrillation patients–Insight from the Fushimi AF Registry. Circ J 2015; 79: 1009-1017.
    OpenUrlCrossRefPubMed
  24. 24.↵
    1. Ye J,
    2. Hu Y,
    3. Chen X,
    4. Yin Z,
    5. Yuan X,
    6. Huang L, et al.
    Association between the weight-adjusted waist index and stroke: a cross-sectional study. BMC Public Health 2023; 23: 1689.
    OpenUrl
  25. 25.↵
    1. Kasza KA,
    2. Tang Z,
    3. Xiao H,
    4. Marshall D,
    5. Stanton C,
    6. Gross A, et al.
    National longitudinal tobacco product discontinuation rates among US youth from the PATH Study: 2013–2019 (waves 1–5). Tob Control 2024; 33: 186-192.
    OpenUrlAbstract/FREE Full Text
  26. 26.↵
    1. Stanaway JD,
    2. Afshin A,
    3. Gakidou E,
    4. Lim SS,
    5. Abate D,
    6. Abate KH, et al.
    Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet 2018; 392: 1923-1994.
    OpenUrl
  27. 27.↵
    1. Chiu N,
    2. Chiu L,
    3. Aggarwal R,
    4. Raber I,
    5. Bhatt DL,
    6. Mukamal KJ
    . Trends in Blood Pressure Treatment Intensification in Older Adults With Hypertension in the United States, 2008 to 2018. Hypertension 2023; 80: 553-562.
    OpenUrl
  28. 28.
    Diabetes Statistics. DRIF. [cited 2023 Sep 29]. Available from: https://diabetesresearch.org/diabetes-statistics/
  29. 29.↵
    CDC. By the Numbers: Diabetes in America. Centers for Disease Control and Prevention. 2022 [cited 2023 Sep 29]. Available from: https://www.cdc.gov/diabetes/health-equity/diabetes-by-the-numbers.html
  30. 30.↵
    1. Bierbower E,
    2. Griffith N,
    3. Raman VK,
    4. Brar V,
    5. Roseman J,
    6. Deedwania P, et al.
    Risk of Stroke in Older Adults With Heart Failure. Am J Cardiol 2023; 189: 70-75.
    OpenUrl
  31. 31.↵
    1. Ho JSY,
    2. Sia CH,
    3. Zheng H,
    4. Tan BYQ,
    5. Ho AFW,
    6. Yeo LLL, et al.
    Interplay between post-myocardial infarction ejection fraction and atrial fibrillation: implications for ischemic stroke. Eur Heart J 2023; 44: ehac779-060.
    OpenUrl
  32. 32.↵
    1. Wajngarten M,
    2. Silva GS
    . Hypertension and Stroke: Update on Treatment. Eur Cardiol Rev 2019; 14: 111-115.
    OpenUrl
  33. 33.↵
    1. Fishman B,
    2. Bardugo A,
    3. Zloof Y,
    4. Bendor CD,
    5. Libruder C,
    6. Zucker I, et al.
    Adolescent Hypertension Is Associated With Stroke in Young Adulthood: A Nationwide Cohort of 1.9 Million Adolescents. Stroke 2023; 54: 1531-1537.
    OpenUrl
  34. 34.↵
    1. Charmilisri A,
    2. Harshi I,
    3. Madhushalini V,
    4. Raja L
    . Enhanced Stroke Prediction through Recursive Feature Elimination and Cross-Validation in Machine Learning. In: 2023 8th International Conference on Communication and Electronics Systems (ICCES) [Internet]. IEEE; 2023. p. 1075–1080. Available from: https://ieeexplore.ieee.org/abstract/document/10192685/
  35. 35.↵
    1. Kaur M,
    2. Sakhare SR,
    3. Wanjale K,
    4. Akter F
    . Early Stroke Prediction Methods for Prevention of Strokes. Behav Neurol 2022; 2022: 7725597.
    OpenUrl
  36. 36.
    1. Alanazi EM,
    2. Abdou A,
    3. Luo J
    . Predicting Risk of Stroke From Lab Tests Using Machine Learning Algorithms: Development and Evaluation of Prediction Models. JMIR Form Res 2021; 5: e23440.
    OpenUrl
  37. 37.↵
    1. Heo J,
    2. Yoon JG,
    3. Park H,
    4. Kim YD,
    5. Nam HS,
    6. Heo JH
    . Machine Learning–Based Model for Prediction of Outcomes in Acute Stroke. Stroke 2019; 50: 1263-1265.
    OpenUrlCrossRefPubMed
  38. 38.↵
    1. Fernandez-Lozano C,
    2. Hervella P,
    3. Mato-Abad V,
    4. Rodríguez-Yáñez M,
    5. Suárez-Garaboa S,
    6. López-Dequidt I, et al.
    Random forest-based prediction of stroke outcome. Sci Rep. 2021; 11: 10071.
    OpenUrlCrossRefPubMed
  39. 39.
    1. Lee J,
    2. Park KM,
    3. Park S
    . Interpretable machine learning for prediction of clinical outcomes in acute ischemic stroke. Frontiers in Neurology 2023; 7: 1234046.
    OpenUrl
  40. 40.↵
    1. Stinear CM,
    2. Smith MC,
    3. Byblow WD
    . Prediction Tools for Stroke Rehabilitation. Stroke 2019; 50: 3314-3322.
    OpenUrlCrossRefPubMed
PreviousNext
Back to top

In this issue

Neurosciences Journal: 29 (3)
Neurosciences Journal
Vol. 29, Issue 3
1 Jul 2024
  • Table of Contents
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Neurosciences Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Leveraging multivariate analysis and adjusted mutual information to improve stroke prediction and interpretability
(Your Name) has sent you a message from Neurosciences Journal
(Your Name) thought you would like to see the Neurosciences Journal web site.
Citation Tools
Leveraging multivariate analysis and adjusted mutual information to improve stroke prediction and interpretability
Moutasem S. Aboonq, Saeed A. Alqahtani
Neurosciences Journal Jul 2024, 29 (3) 190-196; DOI: 10.17712/nsj.2024.3.20230100

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Leveraging multivariate analysis and adjusted mutual information to improve stroke prediction and interpretability
Moutasem S. Aboonq, Saeed A. Alqahtani
Neurosciences Journal Jul 2024, 29 (3) 190-196; DOI: 10.17712/nsj.2024.3.20230100
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Methods
    • Results
    • Discussion
    • Acknowledgement
    • Footnotes
    • References
  • Figures & Data
  • eLetters
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Ranking the difficulty of the cognitive tasks in Dual-Tasks during walking in healthy adults
  • Exploring physiotherapist’s ability to identify cauda equina syndrome early
  • Does the severity of facet joint osteoarthritis affect facet medial branch radiofrequency thermocoagulation results?
Show more Original Article

Similar Articles

Navigate

  • home

More Information

  • Help

Additional journals

  • All Topics

Other Services

  • About

© 2025 Neurosciences Journal Neurosciences is copyright under the Berne Convention and the International Copyright Convention. All rights reserved. Neurosciences is an Open Access journal and articles published are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC). Readers may copy, distribute, and display the work for non-commercial purposes with the proper citation of the original work. Electronic ISSN 1658-3183. Print ISSN 1319-6138.

Powered by HighWire