Skip to main content

Main menu

  • Home
  • Content
    • Latest
    • Ahead of print
    • Archive
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Alerts
    • Feedback
    • Folders
    • Help
  • Other Publications
    • Saudi Medical Journal

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Neurosciences Journal
  • Other Publications
    • Saudi Medical Journal
  • My alerts
  • Log in
Neurosciences Journal

Advanced Search

  • Home
  • Content
    • Latest
    • Ahead of print
    • Archive
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Alerts
    • Feedback
    • Folders
    • Help
  • Follow psmmc on Twitter
  • Visit psmmc on Facebook
  • RSS
Research ArticleOriginal Article
Open Access

Neuroprotective effects of all-trans-retinoic acid are mediated via downregulation of TLR4/NF-κB signaling in a rat model of middle cerebral artery occlusion

Lixi Tan, Qian Liu, Songfa Chen, Rongjiao You, Xinyue Li, Tao Wen and Zhongxing Peng
Neurosciences Journal October 2024, 29 (4) 276-283; DOI: https://doi.org/10.17712/nsj.2024.4.20240010
Lixi Tan
From the Department of Neurology (Tan, Chen, You, Li, Wen, Peng), and from First Affiliated Hospital of Guangdong Pharmaceutical College, and from Liwan Central Hospital of Guangzhou (Tan), Guangzhou, China
MM
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Qian Liu
From the Department of Neurology (Tan, Chen, You, Li, Wen, Peng), and from First Affiliated Hospital of Guangdong Pharmaceutical College, and from Liwan Central Hospital of Guangzhou (Tan), Guangzhou, China
MM
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Songfa Chen
From the Department of Neurology (Tan, Chen, You, Li, Wen, Peng), and from First Affiliated Hospital of Guangdong Pharmaceutical College, and from Liwan Central Hospital of Guangzhou (Tan), Guangzhou, China
MM
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rongjiao You
From the Department of Neurology (Tan, Chen, You, Li, Wen, Peng), and from First Affiliated Hospital of Guangdong Pharmaceutical College, and from Liwan Central Hospital of Guangzhou (Tan), Guangzhou, China
MM
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xinyue Li
From the Department of Neurology (Tan, Chen, You, Li, Wen, Peng), and from First Affiliated Hospital of Guangdong Pharmaceutical College, and from Liwan Central Hospital of Guangzhou (Tan), Guangzhou, China
MM
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tao Wen
From the Department of Neurology (Tan, Chen, You, Li, Wen, Peng), and from First Affiliated Hospital of Guangdong Pharmaceutical College, and from Liwan Central Hospital of Guangzhou (Tan), Guangzhou, China
BD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Zhongxing Peng
From the Department of Neurology (Tan, Chen, You, Li, Wen, Peng), and from First Affiliated Hospital of Guangdong Pharmaceutical College, and from Liwan Central Hospital of Guangzhou (Tan), Guangzhou, China
MM
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Zhongxing Peng
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • eLetters
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Feigin VL,
    2. Brainin M,
    3. Norrving B,
    4. Martins S,
    5. Sacco RL,
    6. Hacke W, et al.
    World Stroke Organization (WSO): Global Stroke Fact Sheet 2022. Int J Stroke 2022; 17: 18-29.
    OpenUrlCrossRefPubMed
  2. 2.↵
    1. Zhou M,
    2. Wang H,
    3. Zeng X,
    4. Yin P,
    5. Zhu J,
    6. Chen W, et al.
    Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019; 394: 1145-1158.
    OpenUrlCrossRefPubMed
  3. 3.↵
    1. Ma Q,
    2. Li R,
    3. Wang L,
    4. Yin P,
    5. Wang Y,
    6. Yan C, et al.
    Temporal trend and attributable risk factors of stroke burden in China, 1990-2019: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2021; 6: e897-e906.
    OpenUrl
  4. 4.↵
    1. Henderson SJ,
    2. Weitz JI,
    3. Kim PY
    . Fibrinolysis: strategies to enhance the treatment of acute ischemic stroke. J Thromb Haemost 2018; 16: 1932-1940.
    OpenUrl
  5. 5.↵
    1. Zhang JH,
    2. Obenaus A,
    3. Liebeskind DS,
    4. Tang J,
    5. Hartman R,
    6. Pearce WJ
    . Recanalization, reperfusion, and recirculation in stroke. J Cereb Blood Flow Metab 2017; 37: 3818-3823.
    OpenUrl
  6. 6.↵
    1. Qiu Y-M,
    2. Zhang C-L,
    3. Chen A-Q,
    4. Wang H-L,
    5. Zhou Y-F,
    6. Li Y-N, et al.
    Immune Cells in the BBB Disruption After Acute Ischemic Stroke: Targets for Immune Therapy? Frontiers In Immunology 2021; 12: 678744.
    OpenUrl
  7. 7.↵
    1. Liu S,
    2. Lin F,
    3. Wang J,
    4. Pan X,
    5. Sun L,
    6. Wu W
    . Polyphenols for the Treatment of Ischemic Stroke: New Applications and Insights. Molecules 2022; 27: 4181.
    OpenUrl
  8. 8.↵
    1. Jin R,
    2. Yang G,
    3. Li G
    . Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 2010; 87: 779-789.
    OpenUrlCrossRefPubMedWeb of Science
  9. 9.
    1. Hu X,
    2. Leak RK,
    3. Shi Y,
    4. Suenaga J,
    5. Gao Y,
    6. Zheng P, et al.
    Microglial and macrophage polarization-new prospects for brain repair. Nat Rev Neurol 2015; 11: 56-64.
    OpenUrlCrossRefPubMed
  10. 10.↵
    1. Han B,
    2. Jiang W,
    3. Cui P,
    4. Zheng K,
    5. Dang C,
    6. Wang J, et al.
    Microglial PGC-1alpha protects against ischemic brain injury by suppressing neuroinflammation. Genome Med 2021; 13: 47.
    OpenUrl
  11. 11.↵
    1. Yang X,
    2. Xu S,
    3. Qian Y,
    4. Xiao Q
    . Resveratrol regulates microglia M1/M2 polarization via PGC-1alpha in conditions of neuroinflammatory injury. Brain Behav Immun 2017; 64: 162-172.
    OpenUrl
  12. 12.↵
    1. Tang J,
    2. Xu L,
    3. Zeng Y,
    4. Gong F
    . Effect of gut microbiota on LPS-induced acute lung injury by regulating the TLR4/NF-kB signaling pathway. Int Immunopharmacol 2021; 91: 107272.
    OpenUrl
  13. 13.↵
    1. Duran-Laforet V,
    2. Pena-Martinez C,
    3. Garcia-Culebras A,
    4. Alzamora L,
    5. Moro MA,
    6. Lizasoain I
    . Pathophysiological and pharmacological relevance of TLR4 in peripheral immune cells after stroke. Pharmacol Ther 2021; 228: 107933.
    OpenUrl
  14. 14.↵
    1. Aluri J,
    2. Cooper MA,
    3. Schuettpelz LG
    . Toll-Like Receptor Signaling in the Establishment and Function of the Immune System. Cells 2021; 10: 1374.
    OpenUrlCrossRef
  15. 15.↵
    1. Qian C,
    2. Cao X
    . Regulation of Toll-like receptor signaling pathways in innate immune responses. Ann N Y Acad Sci 2013; 1283: 67-74.
    OpenUrlCrossRefPubMed
  16. 16.↵
    1. Danzl K,
    2. Messner B,
    3. Doppler C,
    4. Nebert C,
    5. Abfalterer A,
    6. Sakic A, et al.
    Early inhibition of endothelial retinoid uptake upon myocardial infarction restores cardiac function and prevents cell, tissue, and animal death. J Mol Cell Cardiol 2019; 126: 105-117.
    OpenUrl
  17. 17.
    1. Li M,
    2. Tian X,
    3. An R,
    4. Yang M,
    5. Zhang Q,
    6. Xiang F, et al.
    All-Trans Retinoic Acid Ameliorates the Early Experimental Cerebral Ischemia-Reperfusion Injury in Rats by Inhibiting the Loss of the Blood-Brain Barrier via the JNK/P38MAPK Signaling Pathway. Neurochem Res 2018; 43: 1283-1296.
    OpenUrl
  18. 18.
    1. Barakat M,
    2. Hussein AM,
    3. Salama MF,
    4. Awadalla A,
    5. Barakat N,
    6. Serria M, et al.
    Possible Underlying Mechanisms for the Renoprotective Effect of Retinoic Acid-Pretreated Wharton’s Jelly Mesenchymal Stem Cells against Renal Ischemia/Reperfusion Injury. Cells 2022; 11: 1997.
    OpenUrl
  19. 19.↵
    1. Khedr M,
    2. Barakat N,
    3. Mohey El-Deen I,
    4. Zahran F
    . Impact of preconditioning stem cells with all-trans retinoic acid signaling pathway on cisplatin-induced nephrotoxicity by down-regulation of TGFbeta1, IL-6, and caspase-3 and up-regulation of HIF1alpha and VEGF. Saudi J Biol Sci 2022; 29: 831-839.
    OpenUrl
  20. 20.
    1. Sugarman J
    . Ethics in the design and conduct of clinical trials. Epidemiol Rev 2002; 24: 54-58.
    OpenUrlCrossRefPubMed
  21. 21.↵
    1. Yang Y,
    2. Liu H,
    3. Zhang H,
    4. Ye Q,
    5. Wang J,
    6. Yang B, et al.
    ST2/IL-33-Dependent Microglial Response Limits Acute Ischemic Brain Injury. J Neurosci 2017; 37: 4692-4704.
    OpenUrlAbstract/FREE Full Text
  22. 22.↵
    1. Li L
    . Effect of all-trans retinoic acid on MMP-9 expression after cerebral ischemia-reperfusion injury in rats 2014. From: https://kns.cnki.net/kcms2/article/abstract?v=YK1b_MowDz8_PwCYdv-4oiom8vgP21_6hOlXj_m2MoeppWPz5uCLsIDtkn1-UR5CPltRGaEIOJ7KpQoEmLCOC0x4mH9ir7Qxv8hC1TUzAm1wjIsdvvCoSuQZSw64nGjhGv-58HUV0Z55Mn-jorPmmM2O45bH6f503CZqofDjiGp0nQylBwlVffZwgQESUYC_Upaydnp9tHo=&uniplatform=NZKPT&language=CHS
  23. 23.↵
    1. Simats A,
    2. Liesz A
    . Systemic inflammation after stroke: implications for post-stroke comorbidities. EMBO Mol Med 2022; 14: e16269.
    OpenUrl
  24. 24.↵
    1. Wang R,
    2. Chen S,
    3. Liu Y,
    4. Diao S,
    5. Xue Y,
    6. You X, et al.
    All-trans-retinoic acid reduces BACE1 expression under inflammatory conditions via modulation of nuclear factor kappaB (NFkappaB) signaling. J Biol Chem 2015; 290: 22532-22542.
    OpenUrlAbstract/FREE Full Text
  25. 25.↵
    1. Cai W,
    2. Wang J,
    3. Hu M,
    4. Chen X,
    5. Lu Z,
    6. Bellanti JA, et al.
    All trans-retinoic acid protects against acute ischemic stroke by modulating neutrophil functions through STAT1 signaling. J Neuroinflammation 2019; 16: 175.
    OpenUrl
  26. 26.↵
    1. Li M,
    2. Tian X,
    3. An R,
    4. Yang M,
    5. Zhang Q,
    6. Xiang F, et al.
    All-Trans Retinoic Acid Ameliorates the Early Experimental Cerebral Ischemia-Reperfusion Injury in Rats by Inhibiting the Loss of the Blood-Brain Barrier via the JNK/P38MAPK Signaling Pathway. Neurochem Res 2018; 43: 1283-1296.
    OpenUrl
  27. 27.↵
    1. Zarei L,
    2. Bahrami M,
    3. Farhad N,
    4. Froushani SMA,
    5. Abbasi A
    . All-trans retinoic acid effectively reduces atheroma plaque size in a rabbit model of high-fat-induced atherosclerosis. Adv Clin Exp Med 2018; 27: 1631-1636.
    OpenUrl
  28. 28.↵
    1. Cai W,
    2. Wang J,
    3. Hu M,
    4. Chen X,
    5. Lu Z,
    6. Bellanti JA, et al.
    All trans-retinoic acid protects against acute ischemic stroke by modulating neutrophil functions through STAT1 signaling. J Neuroinflammation 2019; 16: 175.
    OpenUrl
  29. 29.↵
    1. Pawluk H,
    2. Grześk G,
    3. Kołodziejska R,
    4. Kozakiewicz M,
    5. Woźniak A,
    6. Grzechowiak E, et al.
    Effect of IL-6 and hsCRP Serum Levels on Functional Prognosis in Stroke Patients Undergoing IV-Thrombolysis: Retrospective Analysis. Clin Interv Aging 2020; 15: 1295-1303.
    OpenUrl
  30. 30.↵
    1. Lambertsen KL,
    2. Biber K,
    3. Finsen B
    . Inflammatory cytokines in experimental and human stroke. J Cereb Blood Flow Metab 2012; 32: 1677-1698.
    OpenUrlCrossRefPubMed
  31. 31.↵
    1. Ma Y,
    2. Wang J,
    3. Wang Y,
    4. Yang GY
    . The biphasic function of microglia in ischemic stroke. Prog Neurobiol 2017; 157: 247-272.
    OpenUrlCrossRefPubMed
  32. 32.
    1. Fisher FM,
    2. Maratos-Flier E
    . Understanding the Physiology of FGF21. Annu Rev Physiol 2016; 78: 223-241.
    OpenUrlCrossRefPubMed
  33. 33.↵
    1. Wang J,
    2. Xing H,
    3. Wan L,
    4. Jiang X,
    5. Wang C,
    6. Wu Y
    . Treatment targets for M2 microglia polarization in ischemic stroke. Biomed Pharmacother 2018; 105: 518-525.
    OpenUrlCrossRefPubMed
  34. 34.↵
    1. Wang HY,
    2. Hou Y,
    3. Sun J,
    4. Xu QL,
    5. Zhang DQ,
    6. Han YC
    . Effect of atorvastatin on expression of TLR4 and NF-κB in stroke rats and its protective effect on brain. Eur Rev Med Pharmacol Sci 2020; 24: 10799-10805.
    OpenUrl
  35. 35.↵
    1. Orecchioni M,
    2. Ghosheh Y,
    3. Pramod AB,
    4. Ley K
    . Macrophage Polarization: Different Gene Signatures in M1(LPS+) vs. Classically and M2(LPS-) vs. Alternatively Activated Macrophages. Front Immunol 2019; 10: 1084.
    OpenUrlCrossRefPubMed
  36. 36.↵
    1. Zhou D,
    2. Ji L,
    3. Chen Y
    . TSPO Modulates IL-4-Induced Microglia/Macrophage M2 Polarization via PPAR-γ Pathway. J Mol Neurosci 2020; 70: 542-549.
    OpenUrl
  37. 37.↵
    1. Wang D,
    2. Liu F,
    3. Zhu L,
    4. Lin P,
    5. Han F,
    6. Wang X, et al.
    FGF21 alleviates neuroinflammation following ischemic stroke by modulating the temporal and spatial dynamics of microglia/macrophages. J Neuroinflammation 2020; 17: 257.
    OpenUrlCrossRef
  38. 38.↵
    1. Li R,
    2. Zhou Y,
    3. Zhang S,
    4. Li J,
    5. Zheng Y,
    6. Fan X
    . The natural (poly)phenols as modulators of microglia polarization via TLR4/NF-κB pathway exert anti-inflammatory activity in ischemic stroke. Eur J Pharmacol 2022; 914: 174660.
    OpenUrl
  39. 39.
    1. Zhang M,
    2. Wang C,
    3. Wu J,
    4. Ha X,
    5. Deng Y,
    6. Zhang X, et al.
    The Effect and Mechanism of KLF7 in the TLR4/NF-kappaB/IL-6 Inflammatory Signal Pathway of Adipocytes. Mediators Inflamm 2018; 2018: 1756494.
    OpenUrl
  40. 40.
    1. Wu GJ,
    2. Lin YW,
    3. Chuang CY,
    4. Tsai HC,
    5. Chen RM
    . Liver nitrosation and inflammation in septic rats were suppressed by propofol via downregulating TLR4/NF-kappaB-mediated iNOS and IL-6 gene expressions. Life Sci 2018; 195: 25-32.
    OpenUrl
  41. 41.↵
    1. Gadani SP,
    2. Walsh JT,
    3. Lukens JR,
    4. Kipnis J
    . Dealing with Danger in the CNS: The Response of the Immune System to Injury. Neuron 2015; 87: 47-62.
    OpenUrlCrossRefPubMed
PreviousNext
Back to top

In this issue

Neurosciences Journal: 29 (4)
Neurosciences Journal
Vol. 29, Issue 4
1 Oct 2024
  • Table of Contents
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Neurosciences Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Neuroprotective effects of all-trans-retinoic acid are mediated via downregulation of TLR4/NF-κB signaling in a rat model of middle cerebral artery occlusion
(Your Name) has sent you a message from Neurosciences Journal
(Your Name) thought you would like to see the Neurosciences Journal web site.
Citation Tools
Neuroprotective effects of all-trans-retinoic acid are mediated via downregulation of TLR4/NF-κB signaling in a rat model of middle cerebral artery occlusion
Lixi Tan, Qian Liu, Songfa Chen, Rongjiao You, Xinyue Li, Tao Wen, Zhongxing Peng
Neurosciences Journal Oct 2024, 29 (4) 276-283; DOI: 10.17712/nsj.2024.4.20240010

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Neuroprotective effects of all-trans-retinoic acid are mediated via downregulation of TLR4/NF-κB signaling in a rat model of middle cerebral artery occlusion
Lixi Tan, Qian Liu, Songfa Chen, Rongjiao You, Xinyue Li, Tao Wen, Zhongxing Peng
Neurosciences Journal Oct 2024, 29 (4) 276-283; DOI: 10.17712/nsj.2024.4.20240010
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Methods
    • Results
    • Discussion
    • Acknowledgement
    • Footnotes
    • References
  • Figures & Data
  • eLetters
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Ranking the difficulty of the cognitive tasks in Dual-Tasks during walking in healthy adults
  • Exploring physiotherapist’s ability to identify cauda equina syndrome early
  • Does the severity of facet joint osteoarthritis affect facet medial branch radiofrequency thermocoagulation results?
Show more Original Article

Similar Articles

Navigate

  • home

More Information

  • Help

Additional journals

  • All Topics

Other Services

  • About

© 2025 Neurosciences Journal Neurosciences is copyright under the Berne Convention and the International Copyright Convention. All rights reserved. Neurosciences is an Open Access journal and articles published are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC). Readers may copy, distribute, and display the work for non-commercial purposes with the proper citation of the original work. Electronic ISSN 1658-3183. Print ISSN 1319-6138.

Powered by HighWire